CUDA Optimizations¶
Performance Engineering
TorchEBM leverages CUDA to accelerate performance-critical operations. This guide explains the CUDA optimization strategies and how to implement new CUDA kernels.
Overview¶
CUDA optimizations in TorchEBM focus on accelerating three main performance bottlenecks:
-
:material-gradient:{ .lg .middle } Score Function Computation
Computing gradients of energy functions can be computationally intensive, especially for large batches or complex energy functions.
-
Sampling Operations
Sampling algorithms like Langevin dynamics require many iterations of score computation and updates.
-
Energy Evaluation
Evaluating energy functions on large batches of samples during training or inference.
CUDA Architecture¶
TorchEBM's CUDA implementation follows a layered architecture:
torchebm/
└── cuda/
├── __init__.py # Package exports
├── ops.py # Python interface to CUDA operations
├── utils.py # CUDA utilities
├── bindings.cpp # PyTorch C++ bindings
└── kernels/ # CUDA kernel implementations
├── score_function.cu # Score function kernel
├── langevin_step.cu # Langevin dynamics step kernel
├── energy_kernels.cu # Energy function kernels
└── include/ # Header files
├── common.cuh # Common utilities
└── ...
PyTorch C++ Extension¶
TorchEBM's CUDA functionality is built on PyTorch's C++ extension mechanism:
# In setup.py
from torch.utils.cpp_extension import CUDAExtension, BuildExtension
setup(
name="torchebm",
ext_modules=[
CUDAExtension(
"torchebm.cuda.kernels",
sources=[
"torchebm/cuda/bindings.cpp",
"torchebm/cuda/kernels/score_function.cu",
"torchebm/cuda/kernels/langevin_step.cu",
"torchebm/cuda/kernels/energy_kernels.cu",
],
include_dirs=["torchebm/cuda/kernels/include"],
extra_compile_args={"cxx": ["-O3"], "nvcc": ["-O3"]}
)
],
cmdclass={"build_ext": BuildExtension}
)
Score Function Optimization¶
The score function (gradient of energy) computation is optimized with CUDA:
Python Interface¶
def cuda_score(energy_fn, x, create_graph=False):
"""CUDA-optimized score function computation.
Args:
energy_fn: Energy function
x: Input tensor of shape (batch_size, dim)
create_graph: Whether to create gradient graph
Returns:
Score tensor of shape (batch_size, dim)
"""
# Check if energy function has custom CUDA implementation
if hasattr(energy_fn, "cuda_score_impl") and torch.cuda.is_available():
return energy_fn.cuda_score_impl(x, create_graph)
# Fall back to standard implementation for common energy functions
if isinstance(energy_fn, GaussianEnergy) and torch.cuda.is_available():
return _gaussian_score_cuda(energy_fn, x)
# Fall back to autograd
return score_function(energy_fn, x, create_graph)
CUDA Kernel¶
// In score_function.cu
__global__ void gaussian_score_kernel(
const float* x, // Input samples (batch_size * dim)
const float* mean, // Mean vector (dim)
const float* precision,// Precision matrix (dim * dim)
float* score, // Output score (batch_size * dim)
int batch_size, // Batch size
int dim // Dimensionality
) {
// Get sample index from CUDA thread
int sample_idx = blockIdx.x * blockDim.x + threadIdx.x;
// Check if this thread processes a valid sample
if (sample_idx < batch_size) {
// Compute centered sample (x - mean)
float centered[MAX_DIM]; // Use shared memory for better performance
for (int d = 0; d < dim; ++d) {
centered[d] = x[sample_idx * dim + d] - mean[d];
}
// Compute Precision * (x - mean)
for (int d = 0; d < dim; ++d) {
float sum = 0.0f;
for (int j = 0; j < dim; ++j) {
sum += precision[d * dim + j] * centered[j];
}
// Score is -Precision * (x - mean)
score[sample_idx * dim + d] = -sum;
}
}
}
// C++ binding function
torch::Tensor gaussian_score_cuda(
torch::Tensor x,
torch::Tensor mean,
torch::Tensor precision
) {
// Get dimensions
int batch_size = x.size(0);
int dim = x.size(1);
// Create output tensor
auto score = torch::empty_like(x);
// Configure CUDA kernel
const int threads_per_block = 256;
const int blocks = (batch_size + threads_per_block - 1) / threads_per_block;
// Launch kernel
gaussian_score_kernel<<<blocks, threads_per_block>>>(
x.data_ptr<float>(),
mean.data_ptr<float>(),
precision.data_ptr<float>(),
score.data_ptr<float>(),
batch_size,
dim
);
return score;
}
Langevin Dynamics Optimization¶
Langevin dynamics sampling is accelerated using CUDA kernels:
Python Interface¶
class CUDALangevinDynamics(LangevinDynamics):
"""CUDA-optimized Langevin dynamics sampler."""
def __init__(self, energy_function, step_size=0.01, noise_scale=1.0):
super().__init__(energy_function, step_size, noise_scale)
def sample_step(self, x):
"""Perform one step of Langevin dynamics with CUDA optimization."""
if not torch.cuda.is_available() or not x.is_cuda:
# Fall back to CPU implementation
return super().sample_step(x)
# Use optimized CUDA implementation
return langevin_step_cuda(
x,
self.energy_function,
self.step_size,
self.noise_scale
)
CUDA Kernel¶
// In langevin_step.cu
__global__ void langevin_step_kernel(
const float* x, // Input samples (batch_size * dim)
const float* score, // Score function values (batch_size * dim)
float* x_new, // Updated samples (batch_size * dim)
float step_size, // Step size parameter
float noise_scale, // Noise scale parameter
float* noise, // Random noise (batch_size * dim)
int batch_size, // Batch size
int dim // Dimensionality
) {
// Get global thread ID
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// Check bounds
if (idx < batch_size * dim) {
// Compute Langevin update
// x_new = x - step_size * score + sqrt(2 * step_size * noise_scale) * noise
float noise_factor = sqrt(2.0f * step_size * noise_scale);
x_new[idx] = x[idx] - step_size * score[idx] + noise_factor * noise[idx];
}
}
// C++ binding function
torch::Tensor langevin_step_cuda(
torch::Tensor x,
torch::Tensor score,
float step_size,
float noise_scale
) {
// Get dimensions
int batch_size = x.size(0);
int dim = x.size(1);
// Generate random noise
auto noise = torch::randn_like(x);
// Create output tensor
auto x_new = torch::empty_like(x);
// Configure CUDA kernel
const int threads_per_block = 256;
const int total_elements = batch_size * dim;
const int blocks = (total_elements + threads_per_block - 1) / threads_per_block;
// Launch kernel
langevin_step_kernel<<<blocks, threads_per_block>>>(
x.data_ptr<float>(),
score.data_ptr<float>(),
x_new.data_ptr<float>(),
step_size,
noise_scale,
noise.data_ptr<float>(),
batch_size,
dim
);
return x_new;
}
Energy Function Optimization¶
Energy function evaluation is optimized for specific analytical energy functions:
Gaussian Energy¶
// In energy_kernels.cu
__global__ void gaussian_energy_kernel(
const float* x, // Input samples (batch_size * dim)
const float* mean, // Mean vector (dim)
const float* precision,// Precision matrix (dim * dim)
float* energy, // Output energy (batch_size)
int batch_size, // Batch size
int dim // Dimensionality
) {
// Get sample index
int sample_idx = blockIdx.x * blockDim.x + threadIdx.x;
// Check bounds
if (sample_idx < batch_size) {
// Compute centered values
float centered[MAX_DIM];
for (int d = 0; d < dim; ++d) {
centered[d] = x[sample_idx * dim + d] - mean[d];
}
// Compute quadratic form: centered^T * precision * centered
float quadratic_sum = 0.0f;
for (int i = 0; i < dim; ++i) {
float row_sum = 0.0f;
for (int j = 0; j < dim; ++j) {
row_sum += precision[i * dim + j] * centered[j];
}
quadratic_sum += centered[i] * row_sum;
}
// Energy is 0.5 * quadratic_sum
energy[sample_idx] = 0.5f * quadratic_sum;
}
}
Memory Optimization Techniques¶
TorchEBM uses several memory optimization techniques:
Shared Memory Usage¶
__global__ void optimized_kernel(...) {
// Declare shared memory for frequently accessed data
__shared__ float shared_data[BLOCK_SIZE];
// Load data into shared memory
shared_data[threadIdx.x] = global_data[blockIdx.x * blockDim.x + threadIdx.x];
__syncthreads();
// Use shared memory for computation
// ...
}
Memory Coalescing¶
// Good: Coalesced memory access
__global__ void coalesced_kernel(float* data, float* result, int size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {
result[idx] = data[idx] * 2.0f;
}
}
// Avoid: Non-coalesced memory access
__global__ void noncoalesced_kernel(float* data, float* result, int width, int height) {
int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row < height) {
for (int col = 0; col < width; ++col) {
// Non-coalesced access pattern
result[row * width + col] = data[row * width + col] * 2.0f;
}
}
}
Reducing Register Pressure¶
__global__ void optimized_kernel(...) {
// Use local variables instead of arrays where possible
float x1, x2, x3, x4;
// Process in chunks to reduce register usage
// ...
}
Thread Block Organization¶
CUDA kernels in TorchEBM are organized to maximize performance:
// Compute optimal block size based on problem dimensions
int compute_block_size(int dim) {
// Power of 2 for better performance
if (dim <= 32) return 32;
if (dim <= 64) return 64;
if (dim <= 128) return 128;
return 256;
}
// Launch kernel with optimal configuration
void launch_kernel(int batch_size, int dim) {
int block_size = compute_block_size(dim);
int grid_size = (batch_size + block_size - 1) / block_size;
my_kernel<<<grid_size, block_size>>>(/* args */);
}
Custom CUDA Kernels for Special Energy Functions¶
TorchEBM includes specialized CUDA kernels for common energy functions:
// Specialized kernel for Rosenbrock function
__global__ void rosenbrock_energy_kernel(
const float* x,
float* energy,
float a,
float b,
int batch_size,
int dim
) {
int sample_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (sample_idx < batch_size) {
float sum = 0.0f;
for (int i = 0; i < dim - 1; ++i) {
float x_i = x[sample_idx * dim + i];
float x_i_plus_1 = x[sample_idx * dim + i + 1];
float term1 = b * (x_i_plus_1 - x_i * x_i) * (x_i_plus_1 - x_i * x_i);
float term2 = (x_i - a) * (x_i - a);
sum += term1 + term2;
}
energy[sample_idx] = sum;
}
}
Performance Benchmarks¶
The following benchmarks demonstrate the performance gains from CUDA optimization:
-
Score Function Computation
- CPU Implementation: 100 ms
- CUDA Implementation: 5 ms
- Speedup: 20x
-
Langevin Dynamics Sampling
- CPU Implementation: 2000 ms
- CUDA Implementation: 200 ms
- Speedup: 10x
-
Energy Evaluation
- CPU Implementation: 80 ms
- CUDA Implementation: 6 ms
- Speedup: 13x
Mixed Precision Training¶
TorchEBM supports mixed precision training:
def mixed_precision_score(energy_fn, x):
"""Compute score with mixed precision."""
# Cast to half precision for computation
x_half = x.half()
x_half.requires_grad_(True)
# Compute energy in half precision
with torch.cuda.amp.autocast():
energy = energy_fn(x_half)
# Compute gradient in full precision
score = torch.autograd.grad(energy.sum(), x_half)[0].float()
return score
Multi-GPU Support¶
TorchEBM provides utilities for multi-GPU operation:
def distribute_sampling(energy_fn, n_samples, n_steps, device_ids):
"""Distribute sampling across multiple GPUs."""
# Distribute samples across devices
samples_per_device = n_samples // len(device_ids)
results = []
for i, device_id in enumerate(device_ids):
device = torch.device(f"cuda:{device_id}")
# Create sampler on device
sampler = LangevinDynamics(energy_fn).to(device)
# Compute samples for this device
samples = sampler.sample_chain(
dim=energy_fn.dim,
n_steps=n_steps,
n_samples=samples_per_device
)
results.append(samples)
# Gather results from all devices
return torch.cat(results, dim=0)
CUDA Stream Management¶
TorchEBM uses CUDA streams for concurrent execution:
def parallel_score_computation(energy_fn, samples_list):
"""Compute scores for multiple sample batches in parallel."""
# Create streams for parallel execution
streams = [torch.cuda.Stream() for _ in range(len(samples_list))]
# Start computation in separate streams
results = []
for i, samples in enumerate(samples_list):
with torch.cuda.stream(streams[i]):
score = energy_fn.score(samples)
results.append(score)
# Synchronize streams
for stream in streams:
stream.synchronize()
return results
Implementing Custom CUDA Kernels¶
To add a new CUDA kernel to TorchEBM:
- Create a new
.cu
file in thetorchebm/cuda/kernels/
directory - Implement the CUDA kernel and C++ binding function
- Add the source file to the
CUDAExtension
insetup.py
- Create a Python interface in
torchebm/cuda/ops.py
Example of a custom kernel implementation:
// In custom_kernel.cu
#include <torch/extension.h>
#include "common.cuh"
// CUDA kernel
__global__ void custom_kernel(...) {
// Kernel implementation
}
// C++ binding function
torch::Tensor custom_kernel_cuda(...) {
// Binding implementation
// ...
return result;
}
// Register function for Python binding
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("custom_kernel", &custom_kernel_cuda, "Custom kernel implementation");
}
Troubleshooting CUDA Issues¶
Common CUDA issues and solutions:
Memory Errors¶
- Check for memory leaks
- Reduce batch size
- Use torch.cuda.empty_cache()
- Monitor memory usage with torch.cuda.memory_summary()
Performance Issues¶
- Use CUDA profiling tools
- Check for serialized operations
- Optimize memory access patterns
- Reduce kernel launch overhead
Common Pitfalls
- Check for proper error handling in CUDA code
- Beware of race conditions in kernel execution
- Ensure correct synchronization between CPU and GPU
- Verify tensor memory layouts match expectations
Resources¶
-
Core Components
Understand the core components of TorchEBM.
-
Energy Functions
Learn about energy function implementation details.
-
CUDA Programming
NVIDIA's CUDA programming guide.