torchebm.integrators.dopri ¶
Dormand-Prince 5(4) integrator with optional adaptive step-size control.
Dopri5Integrator ¶
Bases: BaseRungeKuttaIntegrator
Dormand-Prince 5(4) explicit Runge-Kutta integrator.
A 6-stage, 5th-order method with an embedded 4th-order solution for local error estimation and FSAL (First Same As Last) property. When adaptive=True (the default for integrate() since error_weights is defined), the step size is adjusted automatically to satisfy the tolerance atol + rtol * max(|x|, |x_new|).
Fixed-step usage is available through step() (always fixed) or by passing adaptive=False to integrate().
For an \(s\)-stage explicit Runge-Kutta method, the general update is:
The Butcher tableau is the standard Dormand-Prince 5(4) pair:
Reference
Dormand, J. R. and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19--26.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
atol | float | Absolute tolerance for adaptive stepping. | 1e-06 |
rtol | float | Relative tolerance for adaptive stepping. | 0.001 |
max_steps | int | Maximum number of accepted steps before raising. | 10000 |
safety | float | Safety factor for step-size adjustment (< 1). | 0.9 |
min_factor | float | Minimum step-size shrink factor. | 0.2 |
max_factor | float | Maximum step-size growth factor. | 10.0 |
max_step_size | float | Maximum absolute step size during adaptive integration. | float('inf') |
norm | Optional[Callable[[Tensor], Tensor]] | Callable | None |
device | Optional[device] | Device for computations. | None |
dtype | Optional[dtype] | Data type for computations. | None |
Example
Source code in torchebm/integrators/dopri.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | |
Dopri8Integrator ¶
Bases: BaseRungeKuttaIntegrator
Dormand-Prince 8(7) explicit Runge-Kutta integrator.
A 13-stage, 8th-order method with an embedded 7th-order solution for local error estimation and FSAL (First Same As Last) property. When adaptive=True (the default for integrate() since error_weights is defined), the step size is adjusted automatically to satisfy the tolerance atol + rtol * max(|x|, |x_new|).
Fixed-step usage is available through step() (always fixed) or by passing adaptive=False to integrate().
For an \(s\)-stage explicit Runge-Kutta method, the general update is:
Reference
Prince, P. J. and Dormand, J. R. (1981). High order embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 7(1), 67--75.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
atol | float | Absolute tolerance for adaptive stepping. | 1e-06 |
rtol | float | Relative tolerance for adaptive stepping. | 0.001 |
max_steps | int | Maximum number of accepted steps before raising. | 10000 |
safety | float | Safety factor for step-size adjustment (< 1). | 0.9 |
min_factor | float | Minimum step-size shrink factor. | 0.2 |
max_factor | float | Maximum step-size growth factor. | 10.0 |
max_step_size | float | Maximum absolute step size during adaptive integration. | float('inf') |
norm | Optional[Callable[[Tensor], Tensor]] | Callable | None |
device | Optional[device] | Device for computations. | None |
dtype | Optional[dtype] | Data type for computations. | None |
Example
Source code in torchebm/integrators/dopri.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |