Torchebm > Losses > Equilibrium_matching¶
Contents¶
Classes¶
EquilibriumMatchingLoss- Equilibrium Matching (EqM) training loss.
API Reference¶
torchebm.losses.equilibrium_matching ¶
Equilibrium Matching (EqM) loss.
Implements time-invariant equilibrium training objectives for learning energy landscapes, following the EqM paper:
- Implicit EqM (\(L_{EqM}\)): Learns gradient field directly
[ L_{EqM} = |f(x_\gamma) - (\epsilon - x) \cdot c(\gamma)|^2 ]
- Explicit EqM-E (\(L_{EqM-E}\)): Learns scalar energy via gradient matching
[ L_{EqM-E} = |\nabla g(x_\gamma) - (\epsilon - x) \cdot c(\gamma)|^2 ]
Key differences from Flow Matching: - Time-invariant: Model zeros out time conditioning internally - Gradient direction: EqM learns (noise - data), FM learns (data - noise)