BaseSyntheticDataset
Methods and Attributes¶
Bases: Dataset, ABC
Abstract base class for generating 2D synthetic datasets.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_samples | int | The total number of samples to generate. | required |
device | Optional[Union[str, device]] | The device to place the tensor on. | None |
dtype | dtype | The data type for the output tensor. | float32 |
seed | Optional[int] | A random seed for reproducibility. | None |
Source code in torchebm/datasets/generators.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | |
_seed_generators ¶
Sets the random seeds for numpy and torch if a seed is provided.
Source code in torchebm/datasets/generators.py
_generate_data abstractmethod ¶
_generate ¶
Internal method to handle seeding and call the generation logic.
Source code in torchebm/datasets/generators.py
regenerate ¶
Re-generates the dataset, optionally with a new seed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
seed | Optional[int] | A new random seed. If | None |
Source code in torchebm/datasets/generators.py
get_data ¶
Returns the entire generated dataset as a single tensor.