BaseSampler
Methods and Attributes¶
Bases: DeviceMixin, Module, ABC
Abstract base class for samplers.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | Module | The model to sample from. For MCMC samplers, this is typically a | required |
dtype | dtype | The data type for computations. | float32 |
device | Optional[Union[str, device]] | The device for computations. | None |
use_mixed_precision | bool | Whether to use mixed-precision for sampling. | False |
Source code in torchebm/core/base_sampler.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | |
sample abstractmethod ¶
sample(x: Optional[Tensor] = None, dim: int = 10, n_steps: int = 100, n_samples: int = 1, thin: int = 1, return_trajectory: bool = False, return_diagnostics: bool = False, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor, List[dict]]]
Runs the sampling process.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x | Optional[Tensor] | The initial state to start sampling from. | None |
dim | int | The dimension of the state space. | 10 |
n_steps | int | The number of MCMC steps to perform. | 100 |
n_samples | int | The number of samples to generate. | 1 |
thin | int | The thinning factor for samples (currently not supported). | 1 |
return_trajectory | bool | Whether to return the full trajectory of the samples. | False |
return_diagnostics | bool | Whether to return diagnostics of the sampling process. | False |
Returns:
| Type | Description |
|---|---|
Union[Tensor, Tuple[Tensor, List[dict]]] | Union[torch.Tensor, Tuple[torch.Tensor, List[dict]]]: - A tensor of samples from the model. - If |
Source code in torchebm/core/base_sampler.py
register_scheduler ¶
Registers a parameter scheduler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | The name of the parameter to schedule. | required |
scheduler | BaseScheduler | The scheduler instance. | required |
Source code in torchebm/core/base_sampler.py
get_schedulers ¶
Gets all registered schedulers.
Returns:
| Type | Description |
|---|---|
Dict[str, BaseScheduler] | Dict[str, BaseScheduler]: A dictionary mapping parameter names to their schedulers. |
get_scheduled_value ¶
Gets the current value for a scheduled parameter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | The name of the scheduled parameter. | required |
Returns:
| Name | Type | Description |
|---|---|---|
float | float | The current value of the parameter. |
Raises:
| Type | Description |
|---|---|
KeyError | If no scheduler is registered for the parameter. |
Source code in torchebm/core/base_sampler.py
step_schedulers ¶
Advances all schedulers by one step.
Returns:
| Type | Description |
|---|---|
Dict[str, float] | Dict[str, float]: A dictionary mapping parameter names to their updated values. |
Source code in torchebm/core/base_sampler.py
reset_schedulers ¶
_setup_diagnostics ¶
Initialize the diagnostics dictionary.
1 2 | |
Source code in torchebm/core/base_sampler.py
apply_mixed_precision ¶
A decorator to apply the mixed precision context to a method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
func | The function to wrap. | required |
Returns:
| Type | Description |
|---|---|
| The wrapped function. |
Source code in torchebm/core/base_sampler.py
to ¶
Moves the sampler and its components to the specified device and/or dtype.