BaseTrainer
Methods and Attributes¶
Base class for training energy-based models.
This class provides a generic interface for training EBMs, supporting various training methods and mixed precision training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
energy_function
|
BaseEnergyFunction
|
Energy function to train |
required |
optimizer
|
Optimizer
|
PyTorch optimizer to use |
required |
loss_fn
|
BaseLoss
|
Loss function for training |
required |
device
|
Optional[Union[str, device]]
|
Device to run training on |
None
|
dtype
|
dtype
|
Data type for computations |
float32
|
use_mixed_precision
|
bool
|
Whether to use mixed precision training |
False
|
callbacks
|
Optional[List[Callable]]
|
List of callback functions for training events |
None
|
Methods:
Name | Description |
---|---|
train_step |
Perform a single training step |
train_epoch |
Train for a full epoch |
train |
Train for multiple epochs |
validate |
Validate the model |
save_checkpoint |
Save model checkpoint |
load_checkpoint |
Load model from checkpoint |
Source code in torchebm/core/base_trainer.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
train_step
¶
Perform a single training step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Tensor
|
Batch of training data |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dictionary containing metrics from this step |
Source code in torchebm/core/base_trainer.py
train_epoch
¶
Train for one epoch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataloader
|
DataLoader
|
DataLoader containing training data |
required |
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dictionary with average metrics for the epoch |
Source code in torchebm/core/base_trainer.py
train
¶
train(dataloader: DataLoader, num_epochs: int, validate_fn: Optional[Callable] = None) -> Dict[str, List[float]]
Train the model for multiple epochs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataloader
|
DataLoader
|
DataLoader containing training data |
required |
num_epochs
|
int
|
Number of epochs to train for |
required |
validate_fn
|
Optional[Callable]
|
Optional function for validation after each epoch |
None
|
Returns:
Type | Description |
---|---|
Dict[str, List[float]]
|
Dictionary with metrics over all epochs |
Source code in torchebm/core/base_trainer.py
save_checkpoint
¶
Save a checkpoint of the current training state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to save the checkpoint to |
required |
Source code in torchebm/core/base_trainer.py
load_checkpoint
¶
Load a checkpoint to resume training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the checkpoint file |
required |