BaseSampler
Methods and Attributes¶
Bases: ABC
Base class for samplers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
energy_function
|
BaseEnergyFunction
|
Energy function to sample from. |
required |
dtype
|
dtype
|
Data type to use for the computations. |
float32
|
device
|
Union[str, device]
|
Device to run the computations on (e.g., "cpu" or "cuda"). |
None
|
use_mixed_precision
|
bool
|
Whether to use mixed precision for sampling operations. |
False
|
Methods:
Name | Description |
---|---|
sample |
Run the sampling process. |
sample_chain |
Run the sampling process. |
_setup_diagnostics |
Initialize the diagnostics dictionary. |
to |
Move sampler to specified device. |
Source code in torchebm/core/base_sampler.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
sample
abstractmethod
¶
sample(x: Optional[Tensor] = None, dim: int = 10, n_steps: int = 100, n_samples: int = 1, thin: int = 1, return_trajectory: bool = False, return_diagnostics: bool = False, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor, List[dict]]]
Run the sampling process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Optional[Tensor]
|
Initial state to start the sampling from. |
None
|
dim
|
int
|
Dimension of the state space. |
10
|
k_steps
|
Number of steps to take between samples. |
required | |
n_samples
|
int
|
Number of samples to generate. |
1
|
thin
|
int
|
Thinning factor (not supported yet). |
1
|
return_trajectory
|
bool
|
Whether to return the trajectory of the samples. |
False
|
return_diagnostics
|
bool
|
Whether to return the diagnostics of the sampling process. |
False
|
Returns:
Type | Description |
---|---|
Union[Tensor, Tuple[Tensor, List[dict]]]
|
torch.Tensor: Samples from the sampler. |
Union[Tensor, Tuple[Tensor, List[dict]]]
|
List[dict]: Diagnostics of the sampling process. |
Source code in torchebm/core/base_sampler.py
register_scheduler
¶
Register a parameter scheduler.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the parameter to schedule |
required |
scheduler
|
BaseScheduler
|
Scheduler instance to use |
required |
Source code in torchebm/core/base_sampler.py
get_schedulers
¶
Get all registered schedulers.
Returns:
Type | Description |
---|---|
Dict[str, BaseScheduler]
|
Dictionary mapping parameter names to their schedulers |
get_scheduled_value
¶
Get current value for a scheduled parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the scheduled parameter |
required |
Returns:
Type | Description |
---|---|
float
|
Current value of the parameter |
Raises:
Type | Description |
---|---|
KeyError
|
If no scheduler exists for the parameter |
Source code in torchebm/core/base_sampler.py
step_schedulers
¶
Advance all schedulers by one step.
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dictionary mapping parameter names to their updated values |
Source code in torchebm/core/base_sampler.py
reset_schedulers
¶
_setup_diagnostics
¶
Initialize the diagnostics dictionary.
1 2 |
|
Source code in torchebm/core/base_sampler.py
to
¶
Move sampler to the specified device and optionally change its dtype.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Union[str, device]
|
Target device for computations |
required |
dtype
|
Optional[dtype]
|
Optional data type to convert to |
None
|
Returns:
Type | Description |
---|---|
BaseSampler
|
The sampler instance moved to the specified device/dtype |
Source code in torchebm/core/base_sampler.py
apply_mixed_precision
¶
Decorator to apply mixed precision context to a method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Function to wrap with mixed precision |
required |
Returns:
Type | Description |
---|---|
Wrapped function with mixed precision support |