BaseContrastiveDivergence
Methods and Attributes¶
Bases: BaseLoss
Abstract base class for Contrastive Divergence (CD) based loss functions.
Contrastive Divergence is a family of methods for training energy-based models that approximate the gradient of the log-likelihood by comparing the energy between real data samples (positive phase) and model samples (negative phase) generated through MCMC sampling.
This class provides the common structure for CD variants, including standard CD, Persistent CD (PCD), and others.
Methods:
Name | Description |
---|---|
- __call__ |
Calls the forward method of the loss function. |
- initialize_buffer |
Initializes the replay buffer with random noise. |
- get_negative_samples |
Generates negative samples using the replay buffer strategy. |
- update_buffer |
Updates the replay buffer with new samples. |
- forward |
Computes CD loss given real data samples. |
- compute_loss |
Computes the contrastive divergence loss from positive and negative samples. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
energy_function
|
BaseEnergyFunction
|
The energy function being trained |
required |
sampler
|
BaseSampler
|
MCMC sampler for generating negative samples |
required |
k_steps
|
int
|
Number of MCMC steps to perform for each update |
1
|
persistent
|
bool
|
Whether to use replay buffer (PCD) |
False
|
buffer_size
|
int
|
Size of the buffer for storing replay buffer |
100
|
new_sample_ratio
|
float
|
Ratio of new samples (default 5%) |
0.0
|
init_steps
|
int
|
Number of steps to run when initializing new chain elements |
0
|
dtype
|
dtype
|
Data type for computations |
float32
|
device
|
Optional[Union[str, device]]
|
Device for computations |
None
|
*args
|
Additional positional arguments |
()
|
|
**kwargs
|
Additional keyword arguments |
{}
|
Source code in torchebm/core/base_loss.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
|
initialize_buffer
¶
initialize_buffer(data_shape_no_batch: Tuple[int, ...], buffer_chunk_size: int = 1024, init_noise_scale: float = 0.1) -> torch.Tensor
Initialize the replay buffer with random noise.
For persistent CD variants, this method initializes the replay buffer with random noise. This is typically called the first time the loss is computed or when the batch size changes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_shape
|
Shape of the initial chain state. |
required | |
buffer_chunk_size
|
int
|
Size of the chunks to process during initialization. |
1024
|
Returns:
Type | Description |
---|---|
Tensor
|
The initialized chain. |
Source code in torchebm/core/base_loss.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
get_start_points
¶
Gets the starting points for the MCMC sampler.
Handles both persistent (PCD) and non-persistent (CD-k) modes. Initializes the buffer for PCD on the first call if needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input data batch. Used directly for non-persistent CD and for shape inference/initialization trigger for PCD. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The tensor of starting points for the sampler. |
Source code in torchebm/core/base_loss.py
get_negative_samples
¶
Get negative samples using the replay buffer strategy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size
|
Number of samples to generate. |
required | |
data_shape
|
Shape of the data samples (excluding batch size). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: Negative samples generated from the replay buffer. |
Source code in torchebm/core/base_loss.py
update_buffer
¶
Update the replay buffer with new samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
Tensor
|
New samples to add to the buffer. |
required |
Source code in torchebm/core/base_loss.py
forward
abstractmethod
¶
Compute CD loss given real data samples.
This method should implement the specifics of the contrastive divergence variant, typically: 1. Generate negative samples using the MCMC sampler 2. Compute energies for real and negative samples 3. Calculate the contrastive loss
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Real data samples (positive samples). |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor]
|
Tuple[torch.Tensor, torch.Tensor]: - loss: The contrastive divergence loss - pred_x: Generated negative samples |
Source code in torchebm/core/base_loss.py
compute_loss
abstractmethod
¶
Compute the contrastive divergence loss from positive and negative samples.
This method defines how the loss is calculated given real samples (positive phase) and samples from the model (negative phase). Typical implementations compute the difference between mean energies of positive and negative samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Real data samples (positive samples). |
required |
pred_x
|
Tensor
|
Generated negative samples. |
required |
*args
|
Additional positional arguments. |
()
|
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The contrastive divergence loss |