
Neural Integration of Iterative
Reasoning (NIR) in LLMs for Code

Generation

Soran Ghaderi

Supervisor: Prof. L. Citi

School of Computer Science and Electronic Engineering
University of Essex

This dissertation is submitted for the degree of Master of Science in
Artificial Intelligence

CSEE December 2024

I would like to dedicate this dissertation to my loving parents . . .

Declaration

The author hereby declares that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Soran Ghaderi
December 2024

Acknowledgements

I want to take a moment to sincerely thank the University of Essex for their incredible
support and financial assistance during my master’s program. Their dedication to creating
a vibrant academic environment has truly made a difference in my journey. I’m grateful to
my supervisor, Professor Luca, whose guidance and mentorship have helped my research in
meaningful ways. The access to GPU resources he provided was invaluable in helping me
conduct this dissertation. I also want to acknowledge my fellow students and colleagues; their
support and camaraderie have made this journey much more enjoyable. Collaborating with
them has not only enriched my experience but also improved the quality of my work. Lastly,
I owe a huge debt of gratitude to my family and friends for their unwavering encouragement.
Their belief in me has kept me motivated throughout this challenging yet rewarding journey.

Abstract

Despite advances in large language models (LLMs) for code generation, they still struggle
to effectively utilize contextual information throughout the generation process. To tackle
this challenge, we introduce the Neural Integration of Iterative Reasoning (NIR) framework,
which offers a new method for incorporating Context Representation Vectors (CRVs) at
multiple levels within LLMs. NIR boosts the ability of these models to generate code without
the need for fine-tuning, which allows it to be used across various LLM architectures. We
evaluated NIR by testing it with LLaMA 3.1 on the MBPP dataset, focusing on the early, mid-
and deep integration stages. Our experiments show that the depth of CRV integration has
a notable impact on several aspects of code generation, including response rates, syntactic
correctness, and overall code structure. Deeper integration generally improves syntactic
accuracy and code conciseness, while mid-layer integration shows optimal performance in
semantic tasks. We report detailed evaluation metrics that assess code quality, complexity,
and structure. Our findings indicate possible trade-offs among various code quality measures
and emphasize the potential of adaptive integration strategies. Although NIR demonstrates
promising results, we also identify limitations such as dataset specificity and output inconsis-
tencies. This study contributes to understanding contextual information processing in LLMs
and might be useful for future developments in code-LLMs. We outline future research
directions, including multilayer integration and dynamic adaptation strategies.

Table of contents

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Background on LLMs and their limitations 1
1.2 Problem Statement and Research Questions 2
1.3 Scope and Objectives . 2
1.4 Contributions of the study . 3
1.5 Thesis Structure . 4

2 Literature Review 5
2.1 Traditional Methods Used in LLMs for Reasoning in Code Generation . . . 5

2.1.1 Chain-of-Thought Prompting . 5
2.1.2 Self-Reflection and Iterative Refinement 6
2.1.3 Context-Aware Generation Methods 7
2.1.4 Retrieval-Augmented Generation 7

3 Proposed Architecture 9
3.1 Overview . 9
3.2 Theoritical Framework . 10

3.2.1 Thinking Stage . 10
3.2.2 CRV Generation . 10
3.2.3 CRV stacking . 14
3.2.4 Dimensionality Reduction . 14
3.2.5 Integrating CRVs with Hidden States 15
3.2.6 Generation Stage . 21

xii Table of contents

3.2.7 Overall Process . 21

4 Methodology 23
4.1 Dataset Selection and Preprocessing . 23

4.1.1 Mostly Basic Python Programming (MBPP) 23
4.2 Quantitative Metrics . 23

4.2.1 Response Rate . 23
4.2.2 Code Quality Metrics . 24
4.2.3 Code Structure and Complexity Analysis 26

4.3 Qualitative Analysis . 28
4.3.1 Code Structure and Readability 28
4.3.2 Algorithm Understanding and Implementation 28
4.3.3 Error Patterns and Limitations . 29

5 Experiments and Results 31
5.1 Experimental Setup . 31

5.1.1 The NIR Framework Configuration 31
5.1.2 Hardware and Software Specifications 32
5.1.3 Intermediate Processing Steps . 32

5.2 Quantitative metrics . 34
5.2.1 Response Rate . 34
5.2.2 Code Quality Metrics . 34
5.2.3 Code Structure and Complexity Analysis 36

5.3 Qualitative Analysis . 39
5.3.1 Code Structure and Readability 39
5.3.2 Algorithm Understanding and Implementation 40
5.3.3 Error Patterns and Limitations . 40
5.3.4 Qualitative Analysis Implications 41

5.4 Ablation Studies . 41
5.4.1 Results . 41
5.4.2 Analysis . 42
5.4.3 Ablation Studies Implications . 42

6 Discussion 45
6.1 Interpretation of Results . 45

6.1.1 Response Rate and Code Quality 45
6.1.2 Code Complexity and Structure 46

Table of contents xiii

6.1.3 Implications for Model Architecture and Training 46
6.2 Limitations of the Current Approach . 47

6.2.1 Model and Dataset Limitations . 47
6.2.2 Output Inconsistencies . 48
6.2.3 Context Generation Incompleteness 48
6.2.4 Trade-offs in Code Characteristics 48

7 Conclusion and Future Work 49
7.1 Summary of key findings . 49
7.2 Implications for LLM development . 50

7.2.1 Adaptive Architecture Design . 50
7.2.2 Hierarchical Contextual Processing 50

7.3 Potential future research directions . 50
7.3.1 Future Research Directions . 50

References 53

Appendix A Dataset Structure 61
A.0.1 Example Entry . 61

A.1 Model Modifications . 62

List of figures

3.1 The generation pipeline of NIR architecture. 9
3.2 An illustration of the proposed architecture. The red circles indicate concate-

nated elements and the green circles represent the original elements of the
hidden states. 12

3.3 Illustration of the Thinking Stage process. 13
3.4 This diagram shows the pre-concatenation process of the new sequence and

the original elements of the hidden states. 15
3.5 Updating the causal attention mask with respect to the concatenated sequence 20

4.1 Function Name Consistency . 24

5.1 Hardware and Software Specifications . 32
5.2 Intermediate Processing Steps . 33

List of tables

5.1 NIR Framework Configuration . 31
5.2 Sampling Configuration . 33
5.3 Response Rates Across Different Layers 34
5.4 Code Quality Metrics Across Different Layers 35
5.5 Code Complexity Metrics Across Different Layers 35
5.6 Code Structure Metrics Across Different Layers 36
5.7 Basic Halstead Metrics Across Different Layers 37
5.8 Derived Halstead Metrics Across Different Layers 38
5.9 Complexity Halstead Metrics Across Different Layers 38

A.1 Example Entry for MBPP Dataset . 62

Nomenclature

Roman Symbols

B Batch size

C Set of CRV stacks

C j The j-th CRV stack

C j
i The i-th layer of the j-th CRV stack

CRV Context Representation Vector

CRVreduced Reduced set of selected CRVs

CRVstack Complete stack of CRVs

d Dimensionality of the hidden state

E Number of edges in control flow graph

F Entire model function including thinking, integration, and generation stages

fg Generation function

fu Hidden state update function

g Selection function for CRV reduction

H Stack of all hidden states

H(i) Hidden state tensor for layer i

hi Hidden state at the i-th layer

h′ Updated hidden state

xx Nomenclature

h′i New hidden state after CRV integration

H1 Number of unique operators in code

H2 Number of unique operands in code

h(i) Original hidden state tensor for layer i

ht Hidden state at time step t

I Set of layers where integration occurs

k Key vector

K′ Updated key matrix

k′ Transformed key vector after RoPE application

k′i Updated key vector at position i in extended sequence

K′l Updated key matrix for layer l

Kl Original key matrix for layer l

l Sequence length

l0 Original sequence length

L(i) Sequence length at layer i

LLM Large Language Model

Lo Original sequence length

Lu Updated sequence length

M Set of all model layers

m Length of context generated from thinking stage

M′ Updated attention mask

Ma Additional mask for CRVs

Mo Original attention mask

Mu Updated attention mask

Nomenclature xxi

N Number of nodes in control flow graph

n Total number of layers

N1 Total number of occurrences of operators

N2 Total number of occurrences of operands

P Number of connected components in control flow graph

PE ′ Updated positional encoding

Q Input query

q Input query

q′ Transformed query vector after RoPE application

q′i Updated query vector at position i in extended sequence

qi i-th element of the input query

RΘ,n,d RoPE encoding matrix

R′
Θ,i,d Recalculated RoPE encoding matrix for extended sequence

T Thinking stage function

t Output of the thinking stage

V ′ Updated value matrix

V ′l Updated value matrix for layer l

Vl Original value matrix for layer l

Y Output sequence

yt Output at time step t

Greek Symbols

Φ Function for updating attention mask

Ψ Integration function

θ Parameters of the thinking stage

θd Angle for RoPE encoding at dimension d

Chapter 1

Introduction

The field of artificial intelligence, particularly natural language processing and code genera-
tion, has seen remarkable advances in recent years Wang et al. [2021]Black et al. [2022]Brown
et al. [2020]Beltagy et al. [2020]. Large language models (LLMs) have demonstrated sig-
nificant capabilities in understanding and generating natural language and programming
code Li et al. [2023]. However, these models often struggle with maintaining a consistent
context and applying appropriate reasoning strategies across a diverse coding tasks. This
dissertation introduces and explores the concept of neural integration of iterative reasoning, a
novel approach to enhance the reasoning abilities of language models in code generation by
enhancing LLMs through mid-layer thought injection and investigating its impact.

1.1 Background on LLMs and their limitations

The evolution of language models has led to significant improvements in code generation
tasks. Models like StarCoder Li et al. [2023], Codex Chen et al. [2021], and their successors
have shown impressive results in translating natural language descriptions into functional
code in various programming languages.

However, despite these notable achievements, current language models face several
significant challenges that limit their practical applicability and reliability for real-world code
generation tasks. One major limitation is the lack of consistent adherence to the provided
context and requirements. LLMs often struggle to fully understand and incorporate the
nuances and constraints specified in the input prompt, leading to generated code that may be
syntactically correct, but semantically inconsistent or irrelevant to the desired functionality
Li et al. [2022]. Another critical issue is the limited ability of LLMs to reason about the
underlying logic and algorithmic complexity of the code they generate. Although they can

2 Introduction

produce code that appears to work for simple test cases, they often fail to consider edge cases,
handle complex data structures efficiently, or optimize for performance.

To address these limitations, in this dissertation, we propose a new approach, which aims
to enhance LLMs by integrating iterative reasoning through the injection of embeddings at
the intermediate layers of the model. By capturing and leveraging the step-by-step reasoning
with CoT and self-reflection and processes crucial for effective code generation, the goal is
to enable LLMs to more closely mimic the flexible and adaptive thinking of humans.

1.2 Problem Statement and Research Questions

In this research, we aim to introduce an alternative approach to guide the generation process
in LLMs using context generated through an inner-monologue stage, which we call neural
integration of iterative reasoning, to enhance the reasoning capabilities of LLMs in code
generation. Furthermore, we will offer a comprehensive comparison of our method with direct
text-level prompting, evaluating several metrics such as code correctness and compilability

The key research questions that drive this dissertation are as follows:

1. How can we enhance LLMs to better capture and emulate the iterative reasoning in a
process separate from the main code generation?

2. What is the impact of integrating thought embeddings at intermediate layers of LLMs
on their reasoning abilities and the quality of generated code?

3. How does the proposed mid-layer thought injection approach compare to existing code
generation techniques in terms of performance, context adherence, and adaptability?

4. What are the potential implications of this research for the future development of LLMs
and their application in software engineering tasks?

By addressing these research questions, we aim to contribute to the code generation
capability in LLMs and potentially as a part of a larger research for future work that can be
utilized in other NLP and multimodal tasks.

1.3 Scope and Objectives

We focus on the designing, implementation, and evaluation of the Neural Integration of
Iterative reasoning (NIR) approach, as a technique designed to enhance code generation
capabilities. The core of this work involves designing and implementing a differentiable

1.4 Contributions of the study 3

architecture that enables context manipulation by injecting a proposed solution, thoughts,
and general contexts to help with solving the problem. To assess the impact of this approach,
specific metrics and evaluation methodologies will be utilized to measure the results in
both reasoning abilities and the overall quality of generated code compared with vanila
CoT direct prompting on the text level. Moreover, the effectiveness of the NIR approach
will be validated through experimentation with a variety of task complexities using Python
programming language.

1.4 Contributions of the study

We summarize our contributions as follows:

1. Integrates context representation vectors (CRVs) at various depths within the LLaMA
3.1 model without the need for fine-tuning. This approach provides insights into the
connection between contextual information and the model’s inherent generating stages.

2. Our findings show a nuanced relationship between integration depth and code quality
metrics. Notably, we observe a generally optimal-performing depth at mid-level
integration (Layer 10), that results in an optimal balance between consuming CRVs
and preserving the model’s learned representations.

3. We then highlight the potential need for developing adaptive integration strategies
where, the CRV injection layers could be dynamically adjusted based on task complex-
ity.

4. Implications for future LLM development: Insights into the potential impact of the
NIR approach on the future development of LLMs and their application in software
engineering tasks, considering aspects such as scalability, interpretability, transfer
learning potential, and ethical considerations.

5. Comparative analyses, quantitative measurements, and qualitative case studies that
demonstrate the effectiveness of the NIR approach.

6. Last but not least, we point out potential trade-offs between syntactic correctness,
complexity, and conciseness.

4 Introduction

1.5 Thesis Structure

The dissertation proceeds as follows:
in Chapter 2 We will provide a comprehensive assessment of the literature on both contem-
porary and conventional approaches that LLMs employ for reasoning in code development.
We then Chapter 3 introduce the proposed architecture along with the underlying theoretical
concepts.
Furthermore in Chapter 4, we describe the research methodology, including dataset prepara-
tion, preprocessing steps, and the implementation and evaluation of the proposed architecture.
Moving to Chapter 5, we cover the experimental setup, datasets, evaluation metrics, and
baseline models used for comparison.
In Chapter 6 we discuss the performance metrics, experimental results, and a detailed
analysis of the architectures.
Finally in Chapter 7 we conclude the dissertation by summarizing key findings, discussing
limitations, and proposing future research directions.

Chapter 2

Literature Review

2.1 Traditional Methods Used in LLMs for Reasoning in
Code Generation

In recent years, reasoning has emerged as a key area of research in large language models
due to the crucial need to enhance the model reliability and interpretability. Therefore, in
this section, we will thoroughly examine the methods, approaches, and architectures used to
enhance the efficiency of LLMs in reasoning, highlighting the strengths and weaknesses of
each in the context of code generation. This analysis will provide insights into the current
capabilities of LLMs, the problems they still face, and the future prospects. In addition, we
will demonstrate how our research addresses these gaps and introduces a new perspective on
reasoning.

2.1.1 Chain-of-Thought Prompting

Large Language Models (LLMs) have achieved significant advances in the NLP field, show-
ing success across various tasks such as text classification, machine translation, and question
answering. However, these models face several limitations, with one major shortcoming be-
ing their ability to reason effectively. This limitation cannot simply be resolved by increasing
the model’s size Srivastava et al. [2023].

In order to address this limitation, J. Wei et al. Wei et al. [2023] introduced the Chain
of Thoughts (CoT) prompting method. CoT encourages the model to break down tasks into
smaller components, imitating human reasoning processes. For instance, given the question:
"Soran gained 5 pounds and 3 pounds from his business, and had to pay 2 pounds in taxes.
How much did he gain?" The direct answer might be 6, but using CoT, the reasoning process

6 Literature Review

would be: "Soran initially earned 5 pounds from his business, then gained an additional 3
pounds, totaling 8 pounds. After paying 2 pounds in taxes, his net gain is 6 pounds."

CoT has demonstrated strong potential in reasoning tasks, but its application was initially
limited to a single line of reasoning. The Google Brain team addressed this by introducing
self-consistency Wang et al. [2023], which generates multiple reasoning paths. This method
mimics the variety in human thinking when solving problems, with each path providing
an answer. The final answer is determined by majority voting among the different paths,
which boosts confidence and reduces errors. This enhancement has made CoT with self-
consistency more robust, leading to its integration into several LLMs when dealing with
reasoning problems OpenAI et al. [2024]Dubey et al. [2024].

While CoT has led to notable improvements in LLM reasoning, it has primarily been
tested on mathematical tasks. Studies like Zhou et al. [2022]Fu et al. [2022]Chae et al.
[2024]Xu et al. [2024]Qi et al. [2024] have mainly reported results within the mathematical
domain, leaving its performance in other areas unexplored. Other research, such as Kamb-
hampati et al. [2024]Wang et al. [2024]Sprague et al. [2024], suggests that CoT may be
less effective or even counterproductive in various non-mathematical domains. For example,
reasoning in code generation remains a significant challenge for LLMs.

2.1.2 Self-Reflection and Iterative Refinement

N. Shinn et al. Shinn et al. [2023] introduced the concept of Reflexion, a novel framework
for enhancing language agents through verbal reinforcement learning with a self-reflection
mechanism. Their framework consists of four components: actor, evaluator, self-reflection,
and memory, each playing a crucial role in the system. The actor, which is an LLM, generates
text based on observed states from the environment, while the evaluator assesses the quality
of this output. The self-reflection model, also an LLM, generates verbal feedback to guide
the decision-making process. Finally, Reflexion agents rely on both short-term and long-term
memory.

This framework has shown remarkable results on the HumanEval coding benchmark,
surpassing GPT-4’s 80% with a score of 91% Shinn et al. [2023]. However, a limitation
of the framework is that it only operates on the final solution directly, rather than on the
intermediate stages (thinking process), which reduces its reasoning ability. Additionally, the
framework only works with text and does not support other modalities. The framework could
be optimized by integrating self-reflection into the prompt rather than using a separate block
for it.

2.1 Traditional Methods Used in LLMs for Reasoning in Code Generation 7

2.1.3 Context-Aware Generation Methods

The context window is the maximum length of sequences that an LLM can process at once,
determined during the model’s training process, and represents a key limitation of pre-trained
models. To overcome this limitation, many researchers have begun exploring ways to extend
the context window by fine-tuning models on small datasets (or without fine-tuning), with
positional encoding becoming a focal point of attention.

The improvement began with the introduction of learnable absolute position encoding
Gehring et al. [2017] rather than the original Transformer’s absolute sinusoidal position
encoding Vaswani et al. [2017]. Additionally, relative positional encoding methods have been
developed Shaw et al. [2018], increasing performance and leading to more widely adopted
techniques such as T5 Relative Bias Raffel et al. [2023], RoPE Su et al. [2023], XPos Sun
et al. [2023], and ALiBi Press et al. [2022].

However, these methods still face the constraint of being unable to reason beyond the
context window. Studies such as Chen et al. [2023] modified RoPE by fine-tuning on small
datasets and using Position Interpolation (PI). NTK-Aware was also introduced bloc97
[2023], accounting for the loss of high frequencies, which led to further advancements such
as "Dynamic NTK" interpolation emozilla [2023] and "NTK-by-parts" interpolation bloc97
[2023]. These improvements culminated in YaRN Peng et al. [2023], a state-of-the-art
method that extended the context window after fine-tuning on less than 0.1% of the original
pre-training data Peng et al. [2023].

While these studies have made remarkable progress in expanding the context window,
allowing LLMs to process more information, the challenge remains to improve reasoning
abilities by feeding the model with relevant, structured knowledge to enhance critical thinking
and decision-making, rather than simply increasing the amount of information processed.

2.1.4 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) Lewis et al. [2020] is an innovative approach
in natural language processing (NLP) that combines two core components: retrieval and
generation. The retrieval phase is for finding documents that match the query and feed it to
the large language model (LLM). This approach have many advantages, since it helps the
model to extract accurate answers and reduces hallucinations by connecting responses to
references. Moreover, it eliminates the need to annotate documents with metadata Barnett
et al. [2024].

Even though RAG models offer several benefits, they still fail when presented with
questions that cannot be answered using the available documents. Furthermore, the models

8 Literature Review

might fail to extract the correct answer from the context due to noise or contradicting
information Barnett et al. [2024]. Most importantly, in the context of reasoning, RAG
systems operate at the text level and rely on external tools such as databases and search
engines, which may not directly enhance reasoning. In addition, they are challenging to
evaluate due to the different components with varying functionalities.

Chapter 3

Proposed Architecture

3.1 Overview

Input

Query

Map

Thinking

Reasoning (CoT
and Self-reflection)

Context Extraction

CRV Generation

Generating

Integrating CRVs

Generate Output

Input Input stage

Thinking Thinking stage

Generation Generation stage

−→ Query flow
−→ CRV flow

Fig. 3.1 The generation pipeline of NIR architecture.

In NIR framework, we divide the code generation into three main steps including:

1. Querying the model

2. Thinking stage

10 Proposed Architecture

3. Generation stage

In figure 3.1, we illustrate the overall NIR pipeline for code generation:

3.2 Theoritical Framework

In this section, we will present the theoretical framework for the NIR architecture illustrated
in Figure 3.2 and elucidate the foundational concepts.

3.2.1 Thinking Stage

The thinking stage can be formulated as a function T that generates the query t:

t = T (q,θ) (3.1)

where:

• q ∈ Rk is the initial input query

• θ are the parameters of the thinking stage

• T : Rk×Θ→ Rm is the thinking stage function

The Algorithm 1 presents the algorithmic process taking place in this stage. Furthermore,
Figure 3.3 illustrates this stage visually.

3.2.2 CRV Generation

Let the CRVs generated from the thinking stage be defined as:

CRVi = fi(t,hi), i = 1,2, . . . ,n (3.2)

where:

• CRVi ∈ Rd×l is the i-th Context Representation Vector

• fi : Rm×Rd×l → Rd×l is the function representing the transformation at the i-th layer

• t ∈ Rm is the query generated by the thinking stage

• hi ∈ Rd×l is the hidden state at the i-th layer

3.2 Theoritical Framework 11

Algorithm 1 Thinking Stage Algorithm
Require:

question: Input question or problem statement
Ensure:

context: Generated context for the solution
pythonCode: Final Python code solution

1: procedure THINKINGSTAGE(question)
2: analysis← ANALYZE(question)
3: hints← GENERATEHINTS(analysis)
4: for all hint ∈ hints do
5: rationale,answer← GENERATERATIONALEANDANSWER(hint)
6: repeat
7: re f lection← REFLECTONRATIONALE(rationale)
8: if re f lection is Confirmed then
9: break

10: end if
11: hint← REJECTEDHINT(hint)
12: rationale,answer← GENERATERATIONALEANDANSWER(hint)
13: until re f lection is Confirmed
14: bestRationale← SELECTBESTRATIONALE(rationale)
15: repeat
16: pythonCode← SUGGESTPYTHONCODE(bestRationale)
17: review← REVIEWCODE(pythonCode)
18: if review is not Good then
19: REFINECODE(pythonCode)
20: end if
21: until review is Good
22: context← GENERATECONTEXT(pythonCode)
23: OUTPUT(context, pythonCode)
24: end for
25: return context, pythonCode
26: end procedure

12 Proposed Architecture

Dec 32

Dec 5

Dec 2

Dec 1

...

Dec 32 Dec 32

Dec 5 Dec 5

Dec 2 Dec 2

Dec 1 Dec 1

...

+

...

Output text token

CRV (Context)

CRV Generators

Internal Monologue

Input text token

t = T (q, θ)

First think once

Autoregressive decoding

h′
5 = [CRV5, h5] Concat at l5

o = O(q, {h′
l|l ∈ L})

Generation Stage

Thinking Stage

Fig. 3.2 An illustration of the proposed architecture. The red circles indicate concatenated
elements and the green circles represent the original elements of the hidden states.

The complete CRV stack for input t can be represented as a tensor:

CRVstack = [CRV1;CRV2; . . . ;CRVn] ∈ Rn×d×l (3.3)

3.2 Theoritical Framework 13

Question Analyze Hint Rationale, Answer

Reflection
& analyze
rationales

Select best rationale

Suggest a python code

Review

Generate more context for it

Output

Hint rejected

2 or more

For each hint

Confirmed

Good

Rejected

Refine

Thought trajectory planning

Rationale generation

Fig. 3.3 Illustration of the Thinking Stage process.

where:

• n is the total number of layers

• d is the dimensionality of the hidden state

• l is the sequence length

• [;] denotes vertical stacking.

Combining equations 3.1 and 3.3

The generation of the CRV stack can then be expressed as a composition of functions:

CRVstack = F(T (q,θ),H) (3.4)

where:

14 Proposed Architecture

• F : Rm×Rn×d×l → Rn×d×l is the overall CRV generation function

• H = [h1;h2; . . . ;hn] ∈ Rn×d×l is the stack of all hidden states

Each CRVi can be extracted from the stack using an indexing operation:

CRVi = CRVstack[i, :, :] (3.5)

3.2.3 CRV stacking

The stacking of CRVs vertically is represented as:

CRV =

CRV1

CRV2
...

CRVn

 (3.6)

3.2.4 Dimensionality Reduction

Furthermore, a reduction in dimension can be applied. Here, we maintain a specified number
of CRVs as representatives of the context:

CRVreduced = g({CRVi}L
i=1) (3.7)

where:

• g is a selection function that chooses a subset of CRVs

• {CRVi}L
i=1 is the set of all CRVs from L layers of the model

• CRVreduced is the reduced set of selected CRVs

The function g could be implemented in various ways, such as:

• Selecting a stack of arbitrary CRVs from the decoder layers

• Selecting CRVs from specific layers (e.g., every n-th layer)

• Choosing CRVs based on a relevance metric

• Applying a dimensionality reduction technique (e.g., PCA) to the entire CRV stack

We use the first option as the g function to select the early, middle, and late layers of the
model.

3.2 Theoritical Framework 15

3.2.5 Integrating CRVs with Hidden States

The integration with the input embedding is formulated as:

h′i = [CRVi;hi] (3.8)

where:

• CRVi is the i-th CRV of the generated context from the thinking stage

• hi is the i-th hidden state for the generation stage

• h′i is the new hidden state after integration

• [;] denotes concatenation

+ =

CRVi hi h′
i

Fig. 3.4 This diagram shows the pre-concatenation process of the new sequence and the
original elements of the hidden states.

In the event more than one CRV layers were used, we can generalize the integration
approach, and the final hidden states will be represented as follows:

Let M be the set of all model layers, where |M |= n.
We define I ⊆M as the set of layers where integration occurs.
Let C = {C1,C2, ...,Ck} be the set of CRV stacks, where each C j is a tensor of shape

(n,d, l j), with d being the hidden state dimension and l j the sequence length of the j-th
context.

We define the integration function Ψ for layer i as:

Ψi : Rd×l0

(
k⊎

j=1

Rd×l j

)
→ Rd×(l0+∑

k
j=1 l j)1 (3.9)

where l0 is the original sequence length and
⊎k

j=1 represent the concatenation.
Let I = {i1, i2, ..., in} be the set of indices where CRV integrations occur, ordered such

that i1 < i2 < ... < in. Now, we can define the hidden state tensor H(i) for layer i as:
1The symbol

⊎
denotes the concatenation of hidden states and CRVs. This is particularly appropriate since

sequences are essentially positionally encoded sets that are organized by indices and may include repeated
elements. Concatenation functions as the union of these sets, maintaining the original order while permitting
duplicates.

16 Proposed Architecture

H(i) =

h(i) if i /∈I and i < min(I)

Ψi({C j
i : j ∈ [1,k]},h(i)) if i ∈I

f
(

h(i−1)
)

otherwise

(3.10)

where:

• h(i) is the original hidden state tensor for layer i

• C j
i is the i-th layer of the j-th CRV stack

• [·, ·] denotes tensor concatenation along the sequence dimension

The sequence length L(i) at layer i is given by:

L(i) =

l0 if i < min(I)

l0 +∑
k
j=1 l j otherwise

(3.11)

The final shape of the hidden states of the model for the first round of integration can be
represented as follows:

The sequence of hidden states can be represented as

(h(0)1 ,h(0)2 , ...,h(0)i1−1,h
(1)
i1 ,h(1)i1+1, ...,h

(1)
i2−1,h

(2)
i2 , ...,h(n)in ,h(n)in+1, ...) (3.12)

For instance, if integrations happen at I = {5,7}, we can represent the sequence of hidden
states as

(h1,h2,h3,h4,h
(1)
5 ,h(1)6 ,h(2)7 ,h(2)8 , . . .) (3.13)

where the superscript indicates the number of CRV integrations that have occurred up to
that position. Algorithm 2 shows the algorithmic process of integrating CRVs.

Query Reception

The LLM receives the query Q:

Q = (q1,q2, ...,qn) (3.14)

where n is the length of the query.

3.2 Theoritical Framework 17

Algorithm 2 Integrate CRVs
Require:

h: Current hidden states for all layers
I: Set of indices for layers with full updates
C: Context vectors for all layers
l: Length of the prefix to be preserved

Ensure:
H: Updated hidden states for all layers

1: procedure INTEGRATECRVS(h, I,C, l)
2: H← h
3: for all i ∈ [1,num_layers] do
4: if i /∈ I and i < min(I) then
5: Hi← hi
6: else if i ∈ I then
7: Hi← INTEGRATECRVATLAYER(Ci,hi)
8: else
9: pre f ix← INTEGRATECRVATLAYER(Ci,hi[: l])[l :]

10: updatedSu f f ix← Hi−1[: l]
11: Hi← CONCATENATE(pre f ix,updatedSu f f ix)
12: end if
13: end for
14: return H
15: end procedure

18 Proposed Architecture

Positional Encoding Recalculation

The positional encoding is recalculated for the new sequence from layer l onward: For a
given position m and dimension d, the RoPE encoding is defined as:

RΘ,n,d =

(
cos(nθd) −sin(nθd)

sin(nθd) cos(nθd)

)
(3.15)

where θd = 10000−2d/D, and D is the total number of dimensions.

Application to Query and Key Vectors

For a query vector q and a key vector k at position m, RoPE is applied as follows:

q′ = (q1,q2, . . . ,qD) ·RΘ,m (3.16)

k′ = (k1,k2, . . . ,kD) ·RΘ,m (3.17)

where · denotes element-wise multiplication, and RΘ,m is applied to each pair of dimen-
sions.

Recalculation for Extended Sequence

After CRV integration, for the extended sequence of length n+m, where n is the original
sequence length and m is the length of the new input:

R′Θ,i,d =

(
cos(iθd) −sin(iθd)

sin(iθd) cos(iθd)

)
, i = 0, . . . ,n+m (3.18)

Updated Query and Key Computation

For the new positions in the extended sequence:

q′i = (qi,1,qi,2, . . . ,qi,D) ·R′Θ,i (3.19)

k′i = (ki,1,ki,2, . . . ,ki,D) ·R′Θ,i (3.20)

where i = 0, . . . ,n+m.

3.2 Theoritical Framework 19

Attention Mask Recalculation

Let Mo ∈ {0,1}B×Lo be the original attention mask, where B is the batch size and Lo is the
original sequence length. After concatenation with the CRVs, we define the updated attention
mask Mu as follows:

Mu = Φ(Mo,H) ∈ {0,1}B×Lu×Lu (3.21)

where H ∈ RB×Lu×D represents the hidden states after concatenation, Lu is the updated
sequence length, and D is the hidden state dimension. The function Φ is defined as:

Φ(Mo,H) =

Ma⊕Mo if not causal

(Ma⊕Mo)⊙C if causal
(3.22)

Here:

• Ma ∈ {1}B×(Lu−Lo) is the additional mask for CRVs

• ⊕ denotes concatenation along the sequence dimension

• ⊙ represents element-wise multiplication

• C ∈ {0,1}Lu×Lu is the causal mask defined as:

Ci j =

1 if i≥ j

0 otherwise
(3.23)

The dimensions of the tensors involved are:

Mo ∈ {0,1}B×Lo (3.24)

Ma ∈ {1}B×(Lu−Lo) (3.25)

Ma⊕Mo ∈ {0,1}B×Lu (3.26)

C ∈ {0,1}Lu×Lu (3.27)

The final updated mask Mu as shown in 3.5 is obtained by:

Mu =

(Ma⊕Mo) if not causal

(Ma⊕Mo)
T ⊙C if causal

(3.28)

20 Proposed Architecture

1 0 0

1 1 0

1 1 1

Original Mask (3x3)

Update

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

Updated Mask (5x5)

Red: Original 0 (no attention)

Blue: Original 1 (attention allowed)

Green: New elements (CRVs)

Fig. 3.5 Updating the causal attention mask with respect to the concatenated sequence

where T denotes tensor transposition to match the dimensions for element-wise multipli-
cation with C.

This formulation ensures that:

1. The CRVs (represented by Ma) are attended to.

2. The original attention pattern (represented by Mo) is preserved.

3. In the causal case, the mask maintains the property that position i can only attend to
positions j ≤ i.

Key-Value Cache Update

The cached key-values are updated accordingly:

K′l = [Kl; fk(h′0:n+m)] (3.29)

V ′l = [Vl; fv(h′0:n+m)] (3.30)

where:

• Kl,Vl are the original key and value matrices for layer l

• K′l ,V
′
l are the updated key and value matrices

• fk, fv are the key and value projection functions

• n is the length of the original sequence

3.2 Theoritical Framework 21

• m is the length of the context generated from t (thinking stage)

3.2.6 Generation Stage

The generation stage can be described by:

yt = fg(ht ,CRVreduced) (3.31)

ht+1 = fu(ht ,yt ,CRVreduced) (3.32)

where:

• fg is the generation function

• fu is the hidden state update function

• yt is the output at time step t

• ht is the hidden state at time step t

3.2.7 Overall Process

The entire process can be summarized as:

Y = F(Q,{CRVi}n
i=1) (3.33)

where:

• F represents the entire model including thinking, integration, and generation stages

• Q is the input sequence

• Y is the output sequence

Pseudocode

The pseudocode of the entire process to implement NIR algorithm is described in Algorithm
3.

22 Proposed Architecture

Updated Generation Process

The generation process now incorporates these changes:

yt = F(Q,h′,PE ′,M′,K′,V ′) (3.34)

where F represents the entire updated model including the integration stage and subse-
quent adjustments. We can see the complete algorithmic process in Algorithm 3.

Algorithm 3 NIR Process Algorithm
Require:

Q: Input query
θ : Model parameters
h: Initial hidden state
g: CRV reduction function
I: Set of layers for CRV integration
M: Initial attention mask
l: Sequence length
K,V : Initial key and value matrices

Ensure:
Y : Generated output sequence

1: procedure NIR(Q,θ ,h,g, I,M, l,K,V)
2: t← T (Q,θ)
3: CRV ← GENERATE_CRV(t,h)
4: CRV _stack← CREATE_CRV_STACK(CRV)
5: CRV _reduced← REDUCE_CRV_DIMENSION(CRV _stack,g)
6: H← INTEGRATE_MULTIPLE_CRVS(CRV _reduced,H, I)
7: R← RECALCULATE_POSITIONAL_ENCODING(n,d)
8: M_prime← UPDATE_ATTENTION_MASK(M, l)
9: Y ← /0

10: for t = 1 to max_sequence_length do
11: (y,H)← GENERATE(CRV _reduced,h)
12: Y .append(y)
13: if IS_END_OF_SEQUENCE(y) then
14: break
15: end if
16: end for
17: return Y
18: end procedure

Chapter 4

Methodology

4.1 Dataset Selection and Preprocessing

4.1.1 Mostly Basic Python Programming (MBPP)

The MBPP (Mostly Basic Python Programming) has been used for benchmarking the pro-
posed framework. The dataset is designed to assess the ability of the model to generate
Python code based on natural language descriptions. This dataset is the subset dataset that is
part of the evaluation results for the Meta-Llama-3.1-8B-Instruct model. The details of the
dataset are described in Appendix A and the example entry is represented in Table A.1 under
Appendix A.0.1.

4.2 Quantitative Metrics

In this part, we will explore the important metrics that help us evaluate how well the Neural
Integration of Iterative Reasoning (NIR) framework performs. These metrics provide a
comprehensive way to measure the accuracy, structure, and functionality of the generated
code.

4.2.1 Response Rate

When evaluating large language models (LLMs) for code generation, one important metric
we look at is the response rate. This metric tells us the percentage of tasks where the model
successfully generated a full response without running into problems like timeouts or internal
errors. It’s important to note, however, it does not mean that the generated code is correct;
therefore, it is always paired with other metrics.

24 Methodology

Response Rate =
Number of Responses Generated

Total Number of Prompts
×100

Where:

• Number of Responses Generated: This refers to how many code responses the LLM
produced, regardless of whether they were correct or complete.

• Total Number of Prompts: The total number of prompts or tasks the LLM was given to
generate code for.

4.2.2 Code Quality Metrics

Function Name Consistency

Function name consistency refers to using clear, meaningful, and consistent names for
functions in the code. A good function name should describe the task or purpose of the
function, making it easy for others (and yourself) to understand what the function does just
by looking at its name. Following common naming conventions, such as using ‘snake_case‘
for Python function names, is also important for readability and maintainability.

Inconsistent and unclear function names
Bad Example: The function name is unclear and does not

follow Python’s naming conventions.

def DoSTUFF(a, b):

return a + b

def f(x):

print(x)

Consistent and meaningful function names
Good Example: The function names are descriptive and follow

Python’s naming conventions.

def add_numbers(a, b):

return a + b

def print_message(message):

print(message)

Fig. 4.1 Function Name Consistency

4.2 Quantitative Metrics 25

Syntactic Correctness

It refers to whether the generated code follows the rules and structure of the programming
language it is written in. Essentially, it checks if the code is "written correctly" according
to the syntax of the language. If the code has missing semicolons, misused parentheses, or
other syntax errors, it would fail to be syntactically correct. It is crucial to understand that
even if the logic of our code is correct, it will not run properly if there are syntax errors.

Syntactic Correctness =

1 if there are no syntax errors

0 if there are syntax errors

Cyclomatic Complexity

Cyclomatic complexity is an important software metric that helps us understand how complex
a program really is. It does this by counting the number of linearly independent paths through
the code. In simpler terms, it shows us how many decisions or branches exist in our code,
giving us insight into how challenging it might be to test, debug, or maintain.

To calculate cyclomatic complexity, we use something called a control flow graph, where:

• E: The number of edges (or transitions between nodes).

• N: The number of nodes (which are decision points or instructions).

• P: The number of connected components (independent parts of the code).

The formula for cyclomatic complexity looks like this:

Cyclomatic Complexity = E−N +2P

When we see a higher cyclomatic complexity value, it indicates that there are more
branches in our code. This usually means the code is more complex and could be harder to
maintain. A value of 1 suggests there’s just one straightforward path through the code, while
values over 10 might signal that it’s time for some refactoring. Understanding cyclomatic
complexity is crucial because it helps us gauge how testable our code is—each independent
path needs testing to ensure everything works as intended.

26 Methodology

4.2.3 Code Structure and Complexity Analysis

Basic Code Structure Metrics

Comment Ratio The comment ratio is an important metric which allows us to evaluate
how well-commented the code is. By dividing the number of comment lines by the total
number of lines, it calculates the proportion of comment to LoC in the generated sample.
Generally, a higher comment ratio suggests that our code is well-documented and easier to
maintain, however, sometimes if the ratio is too high it negates its effect and makes the code
difficult to understand especially when the solution is straightforward.

The formula for calculating comment ratio is:

Comment Ratio =
Number of Comment Lines

Total Lines of Code
×100

where:

• Number of Comment Lines: This counts all the lines that contain comments.

• Total Lines of Code: This includes both executable lines and comment lines.

Lines of Code The LoC number is another metric that includes both actual codes and
comments. Although, it can roughly indicate the size of the solution, it is generally better to
be used in conjunction with other metrics to provide a more reliable measurement. Under-
standing this metric is crucial as it gives us a sense of how efficient and clear our model’s
output is.

Furthermore, shorter code that effectively accomplishes its task typically indicates greater
efficiency compared to longer code that does the same job. However, it is important to
highlight the fact that extremely short code snippets could potentially lead to complexity and
lack of clarity. So we need to find an appropriate level where our code is concise enough to
be readable, but not so compact that it becomes hard to maintain.

Number of Characters The next metric we calculate is the number of characters which
counts all the characters in the generated code snippet. Generally, its characteristics are
similar to those of LoC.

Halstead Metrics

Another metric that we will evaluate our framework based on it, is a stack of a range of
various related metrics that measure the program’s complexity and maintainability called

4.2 Quantitative Metrics 27

Halstead Metrics. These metrics include vocabulary, length, volume, difficulty, and effort
which are calculated based on the number of operators and operands in the code snippet.

As mentioned above the main components of Halstead Metrics are as follows:

• H1 - The number of unique operators in the code.

• H2 - The number of unique operands in the code.

• N1 - The total number of occurrences of operators.

• N2 - The total number of occurrences of operands.

From these components, the following Halstead metrics can be derived:

Vocabulary The vocabulary of the program is simply the sum of the number of unique
operators and operands:

Vocabulary = H1 +H2

Length The length of the program is calculated as the total occurrences of operators and
operands:

Length = N1 +N2

Volume The volume of the program represents the size of the implementation and is
calculated as:

Volume = Length× log2(Vocabulary)

Difficulty The difficulty of understanding the code is given by:

Difficulty =
H1

2
× N2

H2

Effort From the above calculated metrics, we can then calculate the effort which is a
measure of the cognitive effort required to understand or write the code:

Effort = Volume×Difficulty

28 Methodology

These metrics provide quantitative insights about the complexity of the code, which is
an estimation of the effort required to maintain, and assessing the overall readability and
maintainability of the codebase.

4.3 Qualitative Analysis

Qualitative metrics provides a crucial insights regarding the performance of NIR approach by
providing a more detailed understanding of the generated code’s quality, the model’s reason-
ing process and its limitations. There are multiple ways to judge and evaluate the qualitative
metrics like its code structure and readability, its understanding and implementation and
errors patterns and limitations.

4.3.1 Code Structure and Readability

This metric is primarily utilized to assess the structure and overall readability of the code
generated by the LLM using NIR approach.

This includes proper indentation, that plays a crucial role in Python where it impacts the
logic. Secondly, it also assesses the quality of the comments by the generated code, on how
well the comments are documents according to its relevance, information and placement.
Additionally, code readability is also assessed by the size of functions; as long functions are
harder to understand and maintain. Lastly, well-named variables improves code readability
and structure, this metric evaluates whether variable name follow a proper consistent and
meaningful naming convention.

4.3.2 Algorithm Understanding and Implementation

This section focuses on evaluation of the correct understanding and implementation of
algorithms, to determine if LLM’s are able to generate a logically sound, complex and
efficient code.

To measure this, the correctness of algorithms is a must. Whether the generated algorithm
correctly implements the task specified in the prompt; moreover efficiency plays an important
role where it is required to measure how well the algorithm optimizes time and space
complexity. LLM’s must be able to handle edge cases, where there are empty inputs or
boundary conditions. Lastly, it should avoid unnecessary complexity and measure whether
LLM chooses to generate an optimal algorithm for the required problem.

4.3 Qualitative Analysis 29

4.3.3 Error Patterns and Limitations

Another way to evaluate the performance of the generated code is by identifying and analyzing
common error patterns and limitations in the code using NIR approach.

Detecting error includes, the measure of frequency of syntax, and logical errors in the
generated code; logic errors may occur where the code is syntactically correct but does not
perform the desired task. Additionally, to track the instances where LLMs generates an
incomplete code, and stops mid-function or miss critical elements of the desired task. Lastly,
to evaluate if the LLMs are overfitting, this can be measured if the generated code closely
resembles examples from the training set, and fails to generalize.

Chapter 5

Experiments and Results

5.1 Experimental Setup

This section details the configuration of our Neural Injection Reasoning (NIR) framework,
the hardware and software specifications used for our experiments, and the intermediate
processing steps employed in our study.

5.1.1 The NIR Framework Configuration

Our implementation of the NIR framework is based on the LLaMA 3.1 model, specifically
the 8 billion parameter version. Table 5.1 summarizes the key configuration details.

Table 5.1 NIR Framework Configuration

Parameter Value
Base Model LLaMA 3.1
Model Size 8 billion parameters
Architecture Decoder-only Transformer
Max New Tokens (Reasoning) 1,000
Max New Tokens (Generation) 250
CRV Integration Layers 1, 10, 23
CRV Max Length 4,096 tokens
Precision 16-bit

We chose this configuration for its balance between computational efficiency and per-
formance. The integration of Context Representation Vectors (CRVs) at layers 1, 10, and
23 allows us to examine the impact of CRV injection at early, middle, and late stages of the
model’s processing pipeline.

32 Experiments and Results

5.1.2 Hardware and Software Specifications

Our experiments were conducted on a Linux-based system accessed via SSH. Figure 5.1
illustrates our hardware and software setup.

Experimental System

Hardware Software

3 NVIDIA A30 GPUs (24,576
MB each)
376 GB CPU RAM
60 GB Disk Space

CUDA 12.4
PyTorch
Transformers
Pandas
Datasets
Accelerate

Development Environment

PyCharm IDE, Jupyter Notebook

Fig. 5.1 Hardware and Software Specifications

5.1.3 Intermediate Processing Steps

Our experimental pipeline involves several key processing steps, as illustrated in Figure 5.2.
For our benchmarking experiments, we used a subset of 250 examples from our dataset.

The dataset includes instructions used by Meta for testing LLaMA 3.1, modified and aug-
mented by the Meta LLaMA 3.1 team. We made several modifications to the base imple-
mentation of the Transformer library, affecting various classes as listed in Appendix A.1.
These modifications were implemented one at a time throughout our experimentation process.
The pretrained weights for our model were obtained from Meta through the Hugging Face
platform. Our sampling configuration is detailed in Table 5.2.

5.1 Experimental Setup 33

Start

Extract Query and Context

Thinking Stage

Extract Proposed Solution and Context

Integration

End

Extract query and context

Generate thoughts

Extract code and context

Integrate using NIR approach

Fig. 5.2 Intermediate Processing Steps

The sampling configuration for our experiments is outlined in Table 5.2. We set the
temperature to 0.8, which balances creativity and coherence in the generated outputs. The
do_sample parameter is set to True, enabling the model to generate diverse responses. We
generate one sequence per input to maintain consistency across our evaluations.

Table 5.2 Sampling Configuration

Parameter Value
Temperature 0.8
do_sample True
Sequences per input 1

34 Experiments and Results

5.2 Quantitative metrics

5.2.1 Response Rate

The percentage of the model’s ability to generate outputs for the given queries is indicated by
the response rate where higher values are generally considered better. Table 5.3 presents the
response rates produced throughout different layer integrations of the NIR framework, as
well as the original model configuration.

Table 5.3 Response Rates Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Original
Response Rate 0.5799 0.9941 0.9941 0.9941
Sample Size 169.0000 169.0000 169.0000 169.0000

Several patterns could be observed from the table 5.3 such as a notably lower response
rate for Layer 1 at 57.99%. Layers 10 and 23, as well as the original configuration, all
demonstrate a higher response rate of 99.41%. The sample size remains consistent at 169
across all configurations. These findings indicate a significant difference in response rate
between Layer 1 and the other configurations. The higher layers of the NIR framework (10
and 23) match the performance of the original model configuration in terms of response rate.

However, it is important to note that, while a high response rate is desirable, it does
not necessarily mean a high quality or correctness of the generated code. Therefore, it is
crucial to take this metric into consideration in conjunction with other code quality metrics
to thoroughly understand the performance of the model.

The following section presents the code quality metrics to assess the quality of the
generated code.

5.2.2 Code Quality Metrics

Function Name Consistency

Function name consistency measures how well the generated function names align with the
given query and test cases. Higher scores indicate a better understanding of the task. From
Table 5.4, we can see that integrating CRVs at Layer 1 achieves a function name consistency
of 95.74%. Layer 10 demonstrates perfect consistency with a score of 100%. Layer 23 shows
a slight decrease to 98.21%, while the original configuration achieves 99.40% consistency.

These findings indicate that the NIR framework maintains high function name consistency
across all layers, with Layer 10 showing the highest performance in this metric.

5.2 Quantitative metrics 35

Syntactic Correctness

An important part of code quality is syntactic correctness which is a core concept for
generating compilable code. Table 5.4 provides details about the syntactic correctness of
the generated code by NIR framework as well as the outputs by the model with origianl
configurations.

Table 5.4 Code Quality Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Original
Syntactic Correctness 0.1915 0.8690 0.9762 0.9762
Function Name Consistency 0.9574 1.0000 0.9821 0.9940

From Table 5.4, we can observe that integrating CRVs at Layer 1 results in a syntactic
correctness of 19.15%. This score increases significantly to 86.90% when integrating CRVs
at Layer 10. The syntactic correctness increases to 97.62% at Layer 23, which is identical
to the score achieved by the original model configuration which is the standard prompting
technique in the text space. The results show a clear progression in syntactic correctness
from earlier to later layers of the model. The significant improvement from Layer 1 to Layer
10, and the further increase to Layer 23, indicates a progressive performance to generate
syntactically correct code through the model’s layers.

Next, we will present various other metrics to help understanding the performance of the
NIR architecture.

Cyclomatic Complexity

Table 5.5 presents the average cyclomatic complexity scores for code generated by the NIR
framework at different layers, as well as the original model configuration.

Table 5.5 Code Complexity Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Original
Cyclomatic Complexity 0.4468 2.0714 2.5952 2.3571

The results show that integrating CRVs at Layer 1 produces code with an average
cyclomatic complexity of 0.4468. When integrating CRVs at Layer 10, we observe a
substantial increase in complexity to 2.0714. At Layer 23, the complexity further increases
to 2.5952. The original model configuration yields an average complexity of 2.3571. These
findings indicate variations in code complexity across different layers of the model. The
lower complexity observed at Layer 1 suggests that this layer may generate structurally

36 Experiments and Results

simpler code compared to other layers. The complexity scores for Layer 23 and the original
configuration are relatively similar, with Layer 23 showing a slightly higher complexity.

Lower values for cyclomatic complexity generally indicate simpler, more maintainable
code. However, it is important to note that extremely low values, as seen in Layer 1,
might suggest overly simplistic solutions that may not fully address the given tasks. Higher
values, while potentially indicating more complex logic, might not be totally unrelated to a
comprehensive solution to complex problems.

In the next section we provide insights about the structural characteristics of the generated
code using a range of code structure metrics and Halstead complexity measures.

5.2.3 Code Structure and Complexity Analysis

Basic Code Structure Metrics

Table 5.6 presents the average values of various code structure metrics for the code generated
by the NIR framework at different layers, as well as the original model configuration.

Table 5.6 Code Structure Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Original
Lines of Code 8.2234 11.5893 6.0952 15.7262
No. Characters 217.1596 335.9464 198.0119 535.0417
Comment Lines 0.0745 1.2262 0.3750 3.0714
Comment Ratio 0.0140 0.0852 0.0256 0.1295

The results show variations in code structure across different layers of the model. The
average lines of code (LoC) range from 6.0952 in Layer 23 to 15.7262 in the original
configuration. Layer 10 produces code with an average of 11.5893 LoC, while Layer 1
generates an average of 8.2234 LoC.

Average comment lines and ratios also vary across layers. The original configuration
shows the highest average of comment lines (3.0714) and comment ratio (0.1295), indicating
longer code documentation. Layer 10 follows with an average of 1.2262 comment lines and
a comment ratio of 0.0852. Layers 1 and 23 show lower values for both metrics.

Overall, the results show a significant variation in code structure and documentation level
across different depths of integration. The original configuration tends to produce longer,
longer comments, while the NIR framework at different layers generates more code with
varying levels of documentation.

In the following sections we will present additional complexity metrics to provide a more
comprehensive understanding of the code generated by our proposed framework.

5.2 Quantitative metrics 37

Halstead Complexity Measures

Basic Halstead Metrics Halstead complexity measures provide quantitative metrics for
assessing various aspects of code complexity. Table 5.7 presents the averages of basic
Halstead metrics for code generated by the NIR framework at different layers, as well as the
original model configuration.

Table 5.7 Basic Halstead Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Layer orig
h1 (Distinct Operators) 2.0319 3.0357 2.8036 3.7143
h2 (Distinct Operands) 11.3511 20.6726 17.1250 32.7917
N1 (Total Operators) 4.9894 6.5774 6.2500 7.6786
N2 (Total Operands) 30.2128 49.1786 42.2321 83.3274

The results show variations in the basic Halstead metrics across different layers of the
model. The number of distinct operators (h1) ranges from 2.0319 in Layer 1 to 3.7143 in
the original configuration. Layer 10 and Layer 23 show intermediate values of 3.0357 and
2.8036 respectively. This suggests that the original configuration tends to use a more diverse
set of operators in the generated code.

For distinct operands (h2), we observe a similar pattern with the original configuration
having the highest value (32.7917), followed by Layer 10 (20.6726), Layer 23 (17.1250),
and Layer 1 (11.3511). This indicates that the original configuration and Layer 10 generate
code with a richer vocabulary of variables and constants.

The total number of operators (N1) and operands (N2) follow a similar trend, with the
original configuration showing the highest values, followed by Layer 10, Layer 23, and Layer
1. This aligns with our previous observations on code length, suggesting that the original
configuration generates longer and potentially more complex code.

We should remember that higher values in these metrics don not necessarily mean better
code quality. They merely suggest that the code is more diverse in terms of operators and
operands used. The interpretation of these metrics should be done in conjunction with other
code quality measures.

To further understand the quality of the generated codes based on Halstead metrics, we
will examine derived and complexity Halstead metrics in the next two sections.

Derived Halstead Metrics

Table 5.8 presents the derived Halstead metrics for code generated by the NIR framework
and the original model configuration to point out additional insights about the complexity
and size of the generated code.

38 Experiments and Results

Table 5.8 Derived Halstead Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Layer orig
Vocabulary 13.3511 23.5655 19.9286 36.5000
Length 43.7660 61.7381 54.9464 97.1905
Volume 170.4025 291.6987 252.0961 511.6619

The vocabulary metric, which is the sum of distinct operators and operands, shows
a similar trend to the basic Halstead metrics. The original configuration has the highest
vocabulary (36.5000), followed by Layer 10 (23.5655), Layer 23 (19.9286), and Layer 1
(13.3511). This suggests that the original configuration generates code with the most diverse
set of operators and operands, while Layer 1 produces the least diverse code.

The length metric, representing the total number of operators and operands, follows a
similar pattern. The original configuration generates the longest code (97.1905), followed
by Layer 10 (61.7381), Layer 23 (54.9464), and Layer 1 (43.7660). This aligns with our
previous observations on code length from the basic code structure metrics.

The volume metric, which combines vocabulary and length to estimate the size of the
implementation, shows the most significant differences between layers. The original configu-
ration has the highest volume (511.6619), more than three times that of Layer 1 (170.4025).
Layers 10 and 23 show intermediate values of 291.6987 and 252.0961 respectively.

Table 5.8 provides more nuanced insights into the code complexity and it shows that the
original configuration of the model generally generates more verbose and potentially more
complex codes which is not unlikely to negatively affect the quality of the generated code.

In the next part, we examine the complexity Halstead metrics to provide estimates of the
difficulty, effort, and time required to understand and implement the generated code

Complexity Halstead Metrics Table 5.9 presents the complexity Halstead metrics for code
generated. These metrics provide estimates of the difficulty and effort required to understand
and implement the generated code.

Table 5.9 Complexity Halstead Metrics Across Different Layers

Metric Layer 1 Layer 10 Layer 23 Layer orig
Difficulty 2.6944 3.8036 3.7718 4.8205
Effort 732.6550 1431.2053 1712.3707 2925.4783

The difficulty metric, which estimates the complexity of the program in terms of error-
proneness and understanding, shows a general increase from Layer 1 to the original configu-
ration. Layer 1 has the lowest difficulty (2.6944), while the original configuration has the

5.3 Qualitative Analysis 39

highest (4.8205). Layers 10 and 23 show similar intermediate values of 3.8036 and 3.7718
respectively.

The next metric which is the effort, estimates the effort required to develop or maintain
the program and follows a similar trend. The original configuration shows the highest effort
(2925), which is nearly four times that of Layer 1 (732). Layers 10 and 23 show intermediate
values of 1431 and 1712 respectively. This substantial difference suggests that the code
generated by the original configuration might require significantly more mental effort to
develop or maintain compared with integration of CRVs at different layers in NIR framework.

5.3 Qualitative Analysis

5.3.1 Code Structure and Readability

Examining the code generated by Layer 10 of our NIR framework for the task of checking
distinct elements in a tuple, we observe:

1 def check_distinct(tup):
2 return len(tup) == len(set(tup))

This solution demonstrates a concise and elegant approach to the problem. The use of
Python’s built-in set data structure showcases an understanding of efficient data manipu-
lation. The one-line implementation is both readable and efficient, directly comparing the
length of the original tuple with the length of its set representation. Comparing this to the
original model’s output:

1 def check_distinct(numbers):
2 """ Checks if all numbers in the tuple are distinct.
3 Args:
4 numbers (tuple): A tuple of integers.
5 Returns:
6 bool: True if all numbers are distinct , False otherwise.
7 """
8 return len(numbers) == len(set(numbers))

We notice that while the core logic remains identical, the original model includes a detailed
docstring. This addition enhances code readability and maintainability, especially in a
collaborative or long-term project setting. However, for simple functions like this, the
NIR framework’s output might be preferred in scenarios where conciseness is valued over
extensive documentation.

40 Experiments and Results

5.3.2 Algorithm Understanding and Implementation

The NIR framework demonstrates a solid grasp of the problem and implements an efficient
solution. The thought process revealed in the trajectories_and_context_10 shows a
systematic approach to problem-solving:

1. Problem understanding: "Write a function that checks if all elements in a tuple are
distinct."

2. Algorithm consideration: Initially considered a counting-based approach, which was
later optimized.

3. Edge case consideration: Empty tuples and single-element tuples were explicitly
considered.

4. Solution refinement: The initial counting-based solution was replaced with a more
efficient set-based approach.

This thought process indicates that the NIR framework is capable of considering multiple
approaches and refining its solution, mimicking human-like problem-solving strategies.

5.3.3 Error Patterns and Limitations

While the generated code is correct and efficient, we observed some limitations in the overall
process:

• Output parsing: There were challenges in consistently extracting code snippets from
the generated output, which could lead to difficulties in automated evaluation processes.

• Context generation incompleteness: Due to token limitations, sometimes the context
generation remained incomplete. This could potentially impact the quality of solutions
for more complex problems that require a fuller context understanding.

• Inconsistent output format: The model sometimes deviated from expected output
patterns, which could complicate automated testing and integration processes.

These issues, while not directly affecting the code quality in this case, highlight areas for
potential improvement in the NIR framework’s output consistency and completeness.

5.4 Ablation Studies 41

5.3.4 Qualitative Analysis Implications

We can point out different key points as a result of the above analysis and evaluations in the
previous sections:

1. However the proposed framework appears to generate functional and accurate codes in
the samples, to generalize the results of the functionality of the framework, further in-
vestigation would be necessary across a range of programming languages and difficulty
levels.

2. We observe a potential trade-off between code conciseness and documentation and
therefore it might require more in-depth study to find the optimal balance or devising a
dynamic approach to selectively decide whether the code needs documentation or not.

3. The framework shows the adherence to the thought processes in both thinking and
generation stages. However, additional research might be necessary to thoroughly
assess its performance across different tasks.

4. We see certain inconsistencies in the output format and completeness. Addressing
these issues could potentially improve the framework’s performance, although the
extent of this improvement would need to be empirically verified.

It is important to note that these observations are based on a limited set of examples and
would require more extensive testing to confirm their generalizability.

5.4 Ablation Studies

Throughout our experiments, we conducted a series of ablation studies that focused on the
impact of CRV integration at different layers of the LLaMA 3.1 model. Our Ablation studies
evaluate the code quality metrics by integrating CRVs at three different layers: 1, 10, and 23.
The original model without CRV integration served as our baseline. All experiments used
the MBPP dataset for consistency.

5.4.1 Results

We have provided the results of this study in 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9 tables,
including the key performance metrics for each ablation condition.

42 Experiments and Results

5.4.2 Analysis

The results suggest that CRV integration at different layers has varying effects on model
performance:

• Response Rate: As shown in Table 5.3, Layer 1 integration exhibits a notably lower
response rate (0.5799) compared to other layers and the original model (all at 0.9941).
This suggests that early integration may impede the model’s ability to generate re-
sponses consistently.

• Code Quality: Table 5.4 indicates that syntactic correctness improves as we move from
Layer 1 (0.1915) to Layer 23 (0.9762), matching the original model’s performance.
Function name consistency is highest at Layer 10 (1.0000), slightly outperforming the
original model (0.9940).

• Code Complexity: The cyclomatic complexity (Table 5.5) increases from Layer 1
(0.4468) to Layer 23 (2.5952), with Layer 10 (2.0714) being closest to the original
model (2.3571). This suggests that deeper integration may lead to more complex code
structures.

• Code Structure: Table 5.6 shows varying trends across layers. Layer 23 generates
the most concise code (6.0952 lines), while the original model produces the longest
(15.7262 lines). Comment ratios are generally lower in the NIR framework compared
to the original model.

• Halstead Metrics: The basic Halstead metrics (Table 5.7) show a general increase
from Layer 1 to the original model, indicating more diverse and numerous operators
and operands. This trend is shown in the derived Halstead metrics (Table 5.8), with
vocabulary, length, and volume all increasing.

• Complexity Halstead Metrics: Table 5.9 shows that difficulty and effort generally
increase from Layer 1 to the original model, suggesting that deeper integration and the
original model produce more complex code that may require more effort to understand
and maintain.

5.4.3 Ablation Studies Implications

These ablation studies reveal several important points:

1. The depth of CRV integration significantly impacts various aspects of code generation,
from response rates to code complexity.

5.4 Ablation Studies 43

2. Layer 1 integration generally underperforms across most metrics, indicating that very
early integration may not be optimal for capturing and utilizing contextual information
effectively.

3. Layer 10 integration often strikes a balance between the extremes, sometimes outper-
forming both Layer 23 and the original model in certain metrics (e.g., function name
consistency).

4. While deeper integration (Layer 23) and the original model tend to produce more
complex code, they also achieve higher syntactic correctness.

These findings suggest that the optimal layer for CRV integration may depend on the specific
requirements of the task at hand. For applications prioritizing code simplicity and conciseness,
earlier integration (around Layer 10) might be preferable. However, for tasks requiring high
syntactic correctness and potentially more complex solutions, later integration or the original
model might be more suitable. It’s important to note that these results are based on the
MBPP dataset and may not generalize to all types of programming tasks. Further research
across diverse programming challenges and larger datasets would be necessary to draw more
definitive conclusions about the optimal CRV integration strategy.

In the next chapter, we discuss the results and provide insights on the quantitative metrics
calculated for our proposed framework on the sample dataset.

Chapter 6

Discussion

6.1 Interpretation of Results

Insights about the performance of our proposed framework across a range of metrics are
provided in the experimental results. The integration of Context Representation Vectors
(CRVs) at different layers of the LLaMA 3.1 model yielded varying outcomes, which might
indicate the necessity for careful interpretation.

6.1.1 Response Rate and Code Quality

The response rate remained consistently high (99.41%) for Layer 10, Layer 23, and the
original model configuration, while Layer 1 showed a notably lower rate of 57.99%. This
suggests that early integration of CRVs might result in the model’s inability to generate
responses consistently. This disruption could be attributed to the premature injection of
high-level contextual information before the model has had the chance to form its own basic
representations of the input. However, the high response rates for deeper layers show that the
NIR framework can maintain the model’s generative capabilities in these configurations.

Regarding code quality, syntactic correctness improved progressively from Layer 1
(19.15%) to Layer 23 (97.62%), matching the original model’s performance. This trend
suggests that deeper integration of CRVs might enhance the model’s ability to generate
syntactically correct code. Function name consistency reached its peak at Layer 10 (100%),
slightly outperforming the original model (99.40%), which could indicate an optimal balance
for this particular aspect of code generation. This suggests that mid-level integration reflect
a balance between leveraging contextual information and preserving the model’s inherent
language generation capabilities.

46 Discussion

The results regarding the Layer 10 integration may be explained by the hierarchical
nature of neural network representations. At this depth, the model has likely formed robust
intermediate representations of the input, making it more receptive to the injection of high-
level contextual information without overwhelming its processing pipeline.

6.1.2 Code Complexity and Structure

The cyclomatic complexity increased from Layer 1 (0.4468) to Layer 23 (2.5952), with Layer
10 (2.0714) being closest to the original model (2.3571). This trend suggests that deeper
CRV integration may lead to more complex code structures, potentially reflecting a more
sophisticated understanding of the programming tasks.

Interestingly, as CRV integration moved deeper into the network, the code structure
metrics revealed that Layer 23 generated the most concise code (6.0952 lines on average),
while the original model produced the longest (15.7262 lines). This could indicate that the
NIR framework, especially at deeper layers, allows the model to leverage more sophisticated
reasoning patterns.

6.1.3 Implications for Model Architecture and Training

These findings have profound implications for the design and training of language models
for code generation:

Adaptive Integration Strategies

The varying performance across layers suggests that an adaptive CRV integration strategy
could be beneficial. For instance, a model could dynamically adjust the depth of integration
based on the complexity of the programming task at hand. Simple tasks might benefit from
shallower integration, while more complex problems could leverage deeper integration for
more sophisticated reasoning.

Hierarchical Context Processing

The performance of mid-layer integration (Layer 10) hints at the potential for hierarchical
context processing in language models. Future architectures could incorporate explicit
mechanisms for processing and integrating contextual information at multiple levels of
abstraction, potentially leading to more robust and versatile code generation capabilities.

6.2 Limitations of the Current Approach 47

Balancing Complexity and Conciseness

The inverse relationship between code complexity and conciseness observed in deeper
layers (particularly Layer 23) raises interesting questions about the nature of "optimal" code
generation. It suggests that models might benefit from training objectives that explicitly
balance structural complexity with expression conciseness, potentially leading to more
elegant and maintainable code outputs.

6.2 Limitations of the Current Approach

While these results can show us promising hints toward exploring more novel ideas to
improve LLMs, there are still several limitations that must be acknowledged:

6.2.1 Model and Dataset Limitations

Dataset

The study primarily used the MBPP dataset, which, while valuable, might not encompass
the full range of real-world programming scenarios. To fully assess the NIR framework’s
effectiveness, it needs to be tested on a wider variety of programming problems and languages.

Generalization to Other Models

The study’s results are specific to the LLaMA 3.1 model. To understand how broadly
applicable the NIR framework is, further research is needed to explore its effectiveness with
other model architectures. This could reveal if the observed patterns hold true across different
language models.

Practical Applications

This research mainly focuses on immediate performance metrics. To understand how CRV
integration impacts model behavior over time, more studies are necessary to investigate more
practical applications. This includes exploring potential fine-tuning strategies that could
optimize CRV integration for practical use cases.

48 Discussion

6.2.2 Output Inconsistencies

The analysis revealed some inconsistencies in output format and completeness, particularly
in parsing code snippets from generated output. This could potentially impact automated
evaluation processes and practical applications of the framework.

6.2.3 Context Generation Incompleteness

Due to token limitations, the context generation sometimes remained incomplete. This
could affect the quality of solutions for more complex problems that require a fuller context
understanding.

6.2.4 Trade-offs in Code Characteristics

The results indicate potential trade-offs between code conciseness, complexity, and docu-
mentation. While the NIR framework often generated more concise code, it also tended to
produce less documentation compared to the original model. The optimal balance between
these characteristics may vary depending on specific use cases and preferences.

In the next chapter we provide a conclusion over this research and mention potential
future research directions to further investigate this approach.

Chapter 7

Conclusion and Future Work

7.1 Summary of key findings

We propossed a new LLM framework called Neural Integration of Iterative Reasoning (NIR)
that integrates context representation vectors (CRV) at different layers of the LLaMA 3.1
model to guide the generation process of the model and potentially enhance reasoning. We
summarize our findings as follows.

• The clear performance in the response rates between Layer 1 (57.99%) and deeper
layers (99.41%) suggests a critical threshold in early processing stages where contextual
information can be effectively integrated without disrupting the model’s generative
capabilities.

• The constant improvement shown in the evalutation of syntactic correctness from Layer
1 (19.15%) to Layer 23 (97.62%) indicates a potential correlation between deeper
integration and the model’s ability to adhere to language-specific syntax rules.

• The peak in function name consistency at Layer 10 (100%), which slightly outperforms
the original model, hints at an optimal depth for semantic understanding in the context
of naming conventions. This is probably due to the fact that naming convention
representations could be captured in the early layers of the model as they require less
cognitive effort to understand and are easier to capture.

• The inverse relationship between code conciseness and integration depth, with Layer
23 producing the most concise code (6.0952 lines on average) while maintaining other
metrics rather good or roughly equal compared to other layers, suggests that deeper
integration might enable more abstract reasoning and efficient solution expression.

50 Conclusion and Future Work

Based on these results, we find that the depth of CRV integration significantly impacts various
aspects of code generation, from response rates to code complexity and structure.

7.2 Implications for LLM development

The results of this study offer potential useful insights that could be considered in the future
development of Large Language Models in code generation:

7.2.1 Adaptive Architecture Design

By dynamically adjusting integration depth of CRVs based on task complexity, LLMs could
become more efficient and context-aware. This adaptive approach would allow models to
optimally allocate computational resources for different tasks.

7.2.2 Hierarchical Contextual Processing

The model’s performance during mid-layer integration, particularly at Layer 10, hints that it
is worth stuying the explicit hierarchical contextual processing modeling in LLMs. Future
architectures might use distinct processing stages for different levels of abstraction, such as
syntactic details and higher-level semantic concepts.

7.3 Potential future research directions

7.3.1 Future Research Directions

In section 5.2 we calculated quantitative metrics for our proposed framework which in turn
raises some interesting research questions. Here we summarize the most important ideas for
further exploration.

Qeustions

• Multi-layer Integration: Exploring the effects of simultaneous CRV integration at
multiple layers could uncover more sophisticated integration strategies.

• Study the effects of integrating the CRVs in multiple rounds.

• Dynamic Integration: Developing mechanisms for dynamically adjusting the depth and
intensity of CRV integration based on task complexity and other contextual factors.

7.3 Potential future research directions 51

• Explore the outcomes of maintaining a memory manager which can integrate or remove
CRVs at arbitrary iterations and generation steps.

• How would the pooling over the neighboring CRV layers affect the model performance?

• How can we change the thinking stage and integrate it into the model architecture
rather than mere prompt engineering?

• Assessing the framework’s performance based on pass@1

• A more comprehensive evaluation of the NIR framework across a diverse range of
programming tasks.

• Apply the framework to other pre-trained LLMs such as Qwen-72B-Instruct, Phi-3,
and similar open-source LLMs.

We conclude our study by reiterating the core concepts of our findings that show potential
for improving code generation, but also highlights the need for balance among different
performance metrics. Our findings may contribute to understanding context use in LLMs
and could lead to developing more advanced coding assistants.

References

Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., and Abdelrazek, M. (2024).
Seven Failure Points When Engineering a Retrieval Augmented Generation System.
arXiv:2401.05856 [cs] version: 1.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The Long-Document Trans-
former. arXiv:2004.05150 [cs].

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., He, H., Leahy, C.,
McDonell, K., Phang, J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds, L., Tow, J.,
Wang, B., and Weinbach, S. (2022). GPT-NeoX-20B: An Open-Source Autoregressive
Language Model. arXiv:2204.06745 [cs].

bloc97 (2023). NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+)
context size without any fine-tuning and minimal perplexity degradation.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot Learners.

Chae, H., Kim, Y., Kim, S., Ong, K. T.-i., Kwak, B.-w., Kim, M., Kim, S., Kwon, T., Chung,
J., Yu, Y., and Yeo, J. (2024). Language Models as Compilers: Simulating Pseudocode
Execution Improves Algorithmic Reasoning in Language Models. arXiv:2404.02575 [cs].

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry,
G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian,
M., Winter, C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E.,
Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra, V.,
Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder,
P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and Zaremba, W. (2021).
Evaluating Large Language Models Trained on Code. arXiv:2107.03374 [cs].

Chen, S., Wong, S., Chen, L., and Tian, Y. (2023). Extending Context Window of Large
Language Models via Positional Interpolation. arXiv:2306.15595 [cs].

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schel-
ten, A., Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar,

54 References

A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A., Gregerson, A., Spataru,
A., Roziere, B., Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra,
C., McConnell, C., Keller, C., Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis,
C., Allonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D., Choudhary, D., Mahajan,
D., Garcia-Olano, D., Perino, D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Synnaeve, G., Lee, G., Anderson,
G. L., Nail, G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H.,
Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I., Misra, I., Evtimov, I., Copet, J., Lee,
J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Billock,
J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak,
J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak,
K., Li, K., Heafield, K., Stone, K., El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L., Jenkins, L., Martin, L., Madaan,
L., Malo, L., Blecher, L., Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M., Singh,
M., Paluri, M., Kardas, M., Oldham, M., Rita, M., Pavlova, M., Kambadur, M., Lewis, M.,
Si, M., Singh, M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N., Bogoychev, N.,
Chatterji, N., Duchenne, O., Çelebi, O., Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P.,
Bhargava, P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q., Dong, Q., Srinivasan, R.,
Ganapathy, R., Calderer, R., Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R., Silva, R., Hou, R., Wang, R.,
Hosseini, S., Chennabasappa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie, S.,
Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale, S., Zhang, S., Vandenhende, S., Batra,
S., Whitman, S., Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Herman, T., Fowler,
T., Sheasha, T., Georgiou, T., Scialom, T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn,
U., Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V., Gonguet, V., Do, V., Vogeti, V.,
Petrovic, V., Chu, W., Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X., Tan, X. E.,
Xie, X., Jia, X., Wang, X., Goldschlag, Y., Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang,
Y., Li, Y., Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z., Singh, A., Grattafiori,
A., Jain, A., Kelsey, A., Shajnfeld, A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A., Feinstein, A., Kallet, A., Sangani,
A., Yunus, A., Lupu, A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton, A., Ryan,
A., Ramchandani, A., Franco, A., Saraf, A., Chowdhury, A., Gabriel, A., Bharambe, A.,
Eisenman, A., Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang, B., Loyd, B.,
De Paola, B., Paranjape, B., Liu, B., Wu, B., Ni, B., Hancock, B., Wasti, B., Spence, B.,
Stojkovic, B., Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia, C., Wang, C.,
Kim, C., Zhou, C., Hu, C., Chu, C.-H., Cai, C., Tindal, C., Feichtenhofer, C., Civin, D.,
Beaty, D., Kreymer, D., Li, D., Wyatt, D., Adkins, D., Xu, D., Testuggine, D., David, D.,
Parikh, D., Liskovich, D., Foss, D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil, E.,
Montgomery, E., Presani, E., Hahn, E., Wood, E., Brinkman, E., Arcaute, E., Dunbar, E.,
Smothers, E., Sun, F., Kreuk, F., Tian, F., Ozgenel, F., Caggioni, F., Guzmán, F., Kanayet,
F., Seide, F., Florez, G. M., Schwarz, G., Badeer, G., Swee, G., Halpern, G., Thattai, G.,
Herman, G., Sizov, G., Guangyi, Zhang, Lakshminarayanan, G., Shojanazeri, H., Zou, H.,
Wang, H., Zha, H., Habeeb, H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H., Damlaj,
I., Molybog, I., Tufanov, I., Veliche, I.-E., Gat, I., Weissman, J., Geboski, J., Kohli, J.,
Asher, J., Gaya, J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein, J., Teboul, J.,
Zhong, J., Jin, J., Yang, J., Cummings, J., Carvill, J., Shepard, J., McPhie, J., Torres, J.,
Ginsburg, J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K., Khandelwal, K., Zand, K.,
Matosich, K., Veeraraghavan, K., Michelena, K., Li, K., Huang, K., Chawla, K., Lakhotia,

References 55

K., Huang, K., Chen, L., Garg, L., A, L., Silva, L., Bell, L., Zhang, L., Guo, L., Yu, L.,
Moshkovich, L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M., Tsimpoukelli, M.,
Mankus, M., Hasson, M., Lennie, M., Reso, M., Groshev, M., Naumov, M., Lathi, M.,
Keneally, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel, M., Vyatskov, M., Samvelyan,
M., Clark, M., Macey, M., Wang, M., Hermoso, M. J., Metanat, M., Rastegari, M., Bansal,
M., Santhanam, N., Parks, N., White, N., Bawa, N., Singhal, N., Egebo, N., Usunier, N.,
Laptev, N. P., Dong, N., Zhang, N., Cheng, N., Chernoguz, O., Hart, O., Salpekar, O.,
Kalinli, O., Kent, P., Parekh, P., Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux, P.,
Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P., Liang, Q., Alao, R., Rodriguez,
R., Ayub, R., Murthy, R., Nayani, R., Mitra, R., Li, R., Hogan, R., Battey, R., Wang, R.,
Maheswari, R., Howes, R., Rinott, R., Bondu, S. J., Datta, S., Chugh, S., Hunt, S., Dhillon,
S., Sidorov, S., Pan, S., Verma, S., Yamamoto, S., Ramaswamy, S., Lindsay, S., Lindsay,
S., Feng, S., Lin, S., Zha, S. C., Shankar, S., Zhang, S., Zhang, S., Wang, S., Agarwal, S.,
Sajuyigbe, S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satterfield, S., Govindaprasad,
S., Gupta, S., Cho, S., Virk, S., Subramanian, S., Choudhury, S., Goldman, S., Remez,
T., Glaser, T., Best, T., Kohler, T., Robinson, T., Li, T., Zhang, T., Matthews, T., Chou,
T., Shaked, T., Vontimitta, V., Ajayi, V., Montanez, V., Mohan, V., Kumar, V. S., Mangla,
V., Albiero, V., Ionescu, V., Poenaru, V., Mihailescu, V. T., Ivanov, V., Li, W., Wang, W.,
Jiang, W., Bouaziz, W., Constable, W., Tang, X., Wang, X., Wu, X., Wang, X., Xia, X.,
Wu, X., Gao, X., Chen, Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y.,
Nam, Y., Yu, Wang, Hao, Y., Qian, Y., He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z.,
Yang, Z., and Zhao, Z. (2024). The Llama 3 Herd of Models. arXiv:2407.21783 [cs].

emozilla (2023). Dynamically Scaled RoPE further increases performance of long context
LLaMA with zero fine-tuning.

Fu, Y., Peng, H., Sabharwal, A., Clark, P., and Khot, T. (2022). Complexity-Based Prompting
for Multi-step Reasoning.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional
Sequence to Sequence Learning. arXiv:1705.03122 [cs].

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M., Stechly, K., Bhambri, S., Saldyt,
L. P., and Murthy, A. B. (2024). Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Proceedings of the 41st International Conference on
Machine Learning, pages 22895–22907. PMLR. ISSN: 2640-3498.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis,
M., Yih, W.-t., Rocktäschel, T., Riedel, S., and Kiela, D. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information
Processing Systems, volume 33, pages 9459–9474. Curran Associates, Inc.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C.,
Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj,
M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N., Zebaze, A.,
Yee, M.-H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z., Murthy, R.,
Stillerman, J., Patel, S. S., Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N.,
Bhattacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M., Zhdanov, F.,
Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao,
T., Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-Gavitt, B., Contractor, D.,

56 References

Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. (2023). StarCoder: may the source be with you!
arXiv:2305.06161 [cs].

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling,
J., Gimeno, F., Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M., Babuschkin, I.,
Chen, X., Huang, P.-S., Welbl, J., Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Robson, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals, O. (2022).
Competition-Level Code Generation with AlphaCode. Science, 378(6624):1092–1097.
arXiv:2203.07814 [cs].

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom,
V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine, J., Bernadett-
Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman, A.-L., Brockman,
G., Brooks, T., Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A., Carey, B.,
Carlson, C., Carmichael, R., Chan, B., Chang, C., Chantzis, F., Chen, D., Chen, S., Chen,
R., Chen, J., Chen, M., Chess, B., Cho, C., Chu, C., Chung, H. W., Cummings, D.,
Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N., Deville, D., Dhar, A., Dohan,
D., Dowling, S., Dunning, S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L.,
Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L., Georges, E., Gibson, C., Goel, V.,
Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S., Greene, R.,
Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke,
J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S., Hu,
X., Huizinga, J., Jain, S., Jain, S., Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto,
S., Jonn, B., Jun, H., Kaftan, T., Kaiser, , Kamali, A., Kanitscheider, I., Keskar, N. S.,
Khan, T., Kilpatrick, L., Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J., Knight,
M., Kokotajlo, D., Kondraciuk, , Kondrich, A., Konstantinidis, A., Kosic, K., Krueger,
G., Kuo, V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C. M., Lim,
R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju, A., Malfacini,
K., Manning, S., Markov, T., Markovski, Y., Martin, B., Mayer, K., Mayne, A., McGrew,
B., McKinney, S. M., McLeavey, C., McMillan, P., McNeil, J., Medina, D., Mehta, A.,
Menick, J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V., Morikawa, E., Mossing,
D., Mu, T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J., Paino, A., Palermo, J.,
Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng, A.,
Perelman, A., Peres, F. d. A. B., Petrov, M., Pinto, H. P. d. O., Michael, Pokorny, Pokrass,
M., Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E., Puri, R., Radford, A., Rae,
J., Ramesh, A., Raymond, C., Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G., Schmidt, H., Schnurr, D.,
Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam, P.,
Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y.,
Staudacher, N., Such, F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N., Thompson,
M. B., Tillet, P., Tootoonchian, A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe,
J. F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J. J., Wang, A.,
Wang, B., Ward, J., Wei, J., Weinmann, C. J., Welihinda, A., Welinder, P., Weng, J., Weng,
L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H., Workman, L., Wu, S.,
Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,

References 57

Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W., and Zoph, B. (2024).
GPT-4 Technical Report. arXiv:2303.08774 [cs].

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. (2023). YaRN: Efficient Context Window
Extension of Large Language Models. arXiv:2309.00071 [cs].

Press, O., Smith, N. A., and Lewis, M. (2022). Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation. arXiv:2108.12409 [cs].

Qi, Z., Ma, M., Xu, J., Zhang, L. L., Yang, F., and Yang, M. (2024). Mutual Reasoning
Makes Smaller LLMs Stronger Problem-Solvers. arXiv:2408.06195 [cs].

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. (2023). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683 [cs, stat].

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-Attention with Relative Position
Representations. In Walker, M., Ji, H., and Stent, A., editors, Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 464–468, New Orleans,
Louisiana. Association for Computational Linguistics.

Shinn, N., Cassano, F., Berman, E., Gopinath, A., Narasimhan, K., and Yao, S. (2023).
Reflexion: Language Agents with Verbal Reinforcement Learning. arXiv:2303.11366 [cs].

Sprague, Z., Yin, F., Rodriguez, J. D., Jiang, D., Wadhwa, M., Singhal, P., Zhao, X., Ye, X.,
Mahowald, K., and Durrett, G. (2024). To CoT or not to CoT? Chain-of-thought helps
mainly on math and symbolic reasoning. arXiv:2409.12183 [cs] version: 1.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R.,
Santoro, A., Gupta, A., Garriga-Alonso, A., Kluska, A., Lewkowycz, A., Agarwal, A.,
Power, A., Ray, A., Warstadt, A., Kocurek, A. W., Safaya, A., Tazarv, A., Xiang, A.,
Parrish, A., Nie, A., Hussain, A., Askell, A., Dsouza, A., Slone, A., Rahane, A., Iyer, A. S.,
Andreassen, A., Madotto, A., Santilli, A., Stuhlmüller, A., Dai, A., La, A., Lampinen, A.,
Zou, A., Jiang, A., Chen, A., Vuong, A., Gupta, A., Gottardi, A., Norelli, A., Venkatesh,
A., Gholamidavoodi, A., Tabassum, A., Menezes, A., Kirubarajan, A., Mullokandov,
A., Sabharwal, A., Herrick, A., Efrat, A., Erdem, A., Karakaş, A., Roberts, B. R., Loe,
B. S., Zoph, B., Bojanowski, B., Özyurt, B., Hedayatnia, B., Neyshabur, B., Inden, B.,
Stein, B., Ekmekci, B., Lin, B. Y., Howald, B., Orinion, B., Diao, C., Dour, C., Stinson,
C., Argueta, C., Ramírez, C. F., Singh, C., Rathkopf, C., Meng, C., Baral, C., Wu, C.,
Callison-Burch, C., Waites, C., Voigt, C., Manning, C. D., Potts, C., Ramirez, C., Rivera,
C. E., Siro, C., Raffel, C., Ashcraft, C., Garbacea, C., Sileo, D., Garrette, D., Hendrycks,
D., Kilman, D., Roth, D., Freeman, D., Khashabi, D., Levy, D., González, D. M., Perszyk,
D., Hernandez, D., Chen, D., Ippolito, D., Gilboa, D., Dohan, D., Drakard, D., Jurgens,
D., Datta, D., Ganguli, D., Emelin, D., Kleyko, D., Yuret, D., Chen, D., Tam, D., Hupkes,
D., Misra, D., Buzan, D., Mollo, D. C., Yang, D., Lee, D.-H., Schrader, D., Shutova, E.,
Cubuk, E. D., Segal, E., Hagerman, E., Barnes, E., Donoway, E., Pavlick, E., Rodola, E.,
Lam, E., Chu, E., Tang, E., Erdem, E., Chang, E., Chi, E. A., Dyer, E., Jerzak, E., Kim,
E., Manyasi, E. E., Zheltonozhskii, E., Xia, F., Siar, F., Martínez-Plumed, F., Happé, F.,
Chollet, F., Rong, F., Mishra, G., Winata, G. I., de Melo, G., Kruszewski, G., Parascandolo,

58 References

G., Mariani, G., Wang, G., Jaimovitch-López, G., Betz, G., Gur-Ari, G., Galijasevic, H.,
Kim, H., Rashkin, H., Hajishirzi, H., Mehta, H., Bogar, H., Shevlin, H., Schütze, H.,
Yakura, H., Zhang, H., Wong, H. M., Ng, I., Noble, I., Jumelet, J., Geissinger, J., Kernion,
J., Hilton, J., Lee, J., Fisac, J. F., Simon, J. B., Koppel, J., Zheng, J., Zou, J., Kocoń, J.,
Thompson, J., Wingfield, J., Kaplan, J., Radom, J., Sohl-Dickstein, J., Phang, J., Wei,
J., Yosinski, J., Novikova, J., Bosscher, J., Marsh, J., Kim, J., Taal, J., Engel, J., Alabi,
J., Xu, J., Song, J., Tang, J., Waweru, J., Burden, J., Miller, J., Balis, J. U., Batchelder,
J., Berant, J., Frohberg, J., Rozen, J., Hernandez-Orallo, J., Boudeman, J., Guerr, J.,
Jones, J., Tenenbaum, J. B., Rule, J. S., Chua, J., Kanclerz, K., Livescu, K., Krauth, K.,
Gopalakrishnan, K., Ignatyeva, K., Markert, K., Dhole, K. D., Gimpel, K., Omondi, K.,
Mathewson, K., Chiafullo, K., Shkaruta, K., Shridhar, K., McDonell, K., Richardson, K.,
Reynolds, L., Gao, L., Zhang, L., Dugan, L., Qin, L., Contreras-Ochando, L., Morency,
L.-P., Moschella, L., Lam, L., Noble, L., Schmidt, L., He, L., Colón, L. O., Metz, L.,
Şenel, L. K., Bosma, M., Sap, M., ter Hoeve, M., Farooqi, M., Faruqui, M., Mazeika, M.,
Baturan, M., Marelli, M., Maru, M., Quintana, M. J. R., Tolkiehn, M., Giulianelli, M.,
Lewis, M., Potthast, M., Leavitt, M. L., Hagen, M., Schubert, M., Baitemirova, M. O.,
Arnaud, M., McElrath, M., Yee, M. A., Cohen, M., Gu, M., Ivanitskiy, M., Starritt, M.,
Strube, M., Swędrowski, M., Bevilacqua, M., Yasunaga, M., Kale, M., Cain, M., Xu, M.,
Suzgun, M., Walker, M., Tiwari, M., Bansal, M., Aminnaseri, M., Geva, M., Gheini, M.,
T, M. V., Peng, N., Chi, N. A., Lee, N., Krakover, N. G.-A., Cameron, N., Roberts, N.,
Doiron, N., Martinez, N., Nangia, N., Deckers, N., Muennighoff, N., Keskar, N. S., Iyer,
N. S., Constant, N., Fiedel, N., Wen, N., Zhang, O., Agha, O., Elbaghdadi, O., Levy, O.,
Evans, O., Casares, P. A. M., Doshi, P., Fung, P., Liang, P. P., Vicol, P., Alipoormolabashi,
P., Liao, P., Liang, P., Chang, P., Eckersley, P., Htut, P. M., Hwang, P., Miłkowski, P.,
Patil, P., Pezeshkpour, P., Oli, P., Mei, Q., Lyu, Q., Chen, Q., Banjade, R., Rudolph, R. E.,
Gabriel, R., Habacker, R., Risco, R., Millière, R., Garg, R., Barnes, R., Saurous, R. A.,
Arakawa, R., Raymaekers, R., Frank, R., Sikand, R., Novak, R., Sitelew, R., LeBras, R.,
Liu, R., Jacobs, R., Zhang, R., Salakhutdinov, R., Chi, R., Lee, R., Stovall, R., Teehan, R.,
Yang, R., Singh, S., Mohammad, S. M., Anand, S., Dillavou, S., Shleifer, S., Wiseman,
S., Gruetter, S., Bowman, S. R., Schoenholz, S. S., Han, S., Kwatra, S., Rous, S. A.,
Ghazarian, S., Ghosh, S., Casey, S., Bischoff, S., Gehrmann, S., Schuster, S., Sadeghi, S.,
Hamdan, S., Zhou, S., Srivastava, S., Shi, S., Singh, S., Asaadi, S., Gu, S. S., Pachchigar,
S., Toshniwal, S., Upadhyay, S., Shyamolima, Debnath, Shakeri, S., Thormeyer, S., Melzi,
S., Reddy, S., Makini, S. P., Lee, S.-H., Torene, S., Hatwar, S., Dehaene, S., Divic, S.,
Ermon, S., Biderman, S., Lin, S., Prasad, S., Piantadosi, S. T., Shieber, S. M., Misherghi,
S., Kiritchenko, S., Mishra, S., Linzen, T., Schuster, T., Li, T., Yu, T., Ali, T., Hashimoto,
T., Wu, T.-L., Desbordes, T., Rothschild, T., Phan, T., Wang, T., Nkinyili, T., Schick,
T., Kornev, T., Tunduny, T., Gerstenberg, T., Chang, T., Neeraj, T., Khot, T., Shultz, T.,
Shaham, U., Misra, V., Demberg, V., Nyamai, V., Raunak, V., Ramasesh, V., Prabhu, V. U.,
Padmakumar, V., Srikumar, V., Fedus, W., Saunders, W., Zhang, W., Vossen, W., Ren, X.,
Tong, X., Zhao, X., Wu, X., Shen, X., Yaghoobzadeh, Y., Lakretz, Y., Song, Y., Bahri, Y.,
Choi, Y., Yang, Y., Hao, Y., Chen, Y., Belinkov, Y., Hou, Y., Hou, Y., Bai, Y., Seid, Z.,
Zhao, Z., Wang, Z., Wang, Z. J., Wang, Z., and Wu, Z. (2023). Beyond the Imitation Game:
Quantifying and extrapolating the capabilities of language models. arXiv:2206.04615 [cs,
stat].

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. (2023). RoFormer: Enhanced
Transformer with Rotary Position Embedding. arXiv:2104.09864 [cs].

References 59

Sun, Y., Dong, L., Patra, B., Ma, S., Huang, S., Benhaim, A., Chaudhary, V., Song, X.,
and Wei, F. (2023). A Length-Extrapolatable Transformer. In Rogers, A., Boyd-Graber,
J., and Okazaki, N., editors, Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 14590–14604, Toronto,
Canada. Association for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, u.,
and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., and Zhou,
D. (2023). Self-Consistency Improves Chain of Thought Reasoning in Language Models.
arXiv:2203.11171 [cs].

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S., Ren, W., Arulraj, A., He, X., Jiang,
Z., Li, T., Ku, M., Wang, K., Zhuang, A., Fan, R., Yue, X., and Chen, W. (2024). MMLU-
Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark.
arXiv:2406.01574 [cs].

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. H. (2021). CodeT5: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation.
arXiv:2109.00859 [cs].

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and Zhou,
D. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
arXiv:2201.11903 [cs].

Xu, X., Tao, C., Shen, T., Xu, C., Xu, H., Long, G., and Lou, J.-g. (2024). Re-Reading
Improves Reasoning in Large Language Models. arXiv:2309.06275 [cs].

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C.,
Bousquet, O., Le, Q. V., and Chi, E. H. (2022). Least-to-Most Prompting Enables
Complex Reasoning in Large Language Models.
[heading=bibintoc, title=References]

Appendix A

Dataset Structure

The dataset contains information about the performance of the model on the MBPP task.
Each entry in the dataset includes the following columns:

1. task_type: This is "Generative" for the MBPP task, as it requires the model to generate
code.

2. task_name: This is "mbpp" which describes this specific dataset.

3. input_question: The natural language description of the programming task.

4. input_final_prompt: The complete prompt provided to the model, including additional
context or instructions.

5. input_correct_responses: The expected correct Python code solution(s) for the given
task.

6. output_prediction_text: The actual code generated by the Meta-Llama-3.1-8B-
Instruct model in response to the prompt.

7. is_correct: A boolean value indicating whether output of the model matches the
expected solution.

A.0.1 Example Entry

62 Dataset Structure

Field Value

task_type Generative

task_name mbpp

input_question Write a Python function to find the sum of all even numbers in a
list.

input_final_prompt Write a Python function to find the sum of all even numbers in a
list. Your function should take a list of integers as input and
return the sum of all even numbers in that list.

input_correct_responses

1 def sum_even_numbers(numbers):
2 return sum(num for num in numbers if

num % 2 == 0)
3

output_prediction_text

1 def sum_even_numbers(numbers):
2 return sum(num for num in numbers if

num % 2 == 0)
3

is_correct true

Table A.1 Example Entry for MBPP Dataset

A.1 Model Modifications

In our implementation of the NIR framework, we made several modifications to the base
Transformer library. These changes affected various classes and functions within the LLaMA
model architecture. The following list details the specific components that were modified:

1. LLaMA SDPA Attention: We adjusted the scaled dot-product attention mechanism
to make it compatible with the integration of Context Representation Vectors (CRVs).

2. LLaMA Attention: The general attention mechanism was modified to handle the
additional context after concatentation of CRVs during the forward pass.

3. LLaMA Rotary Embedding: We adapted the rotary embedding function to be updated
after CRV injection process.

A.1 Model Modifications 63

4. Apply Rotary Positional Encoding Function: This function was updated to ensure
the correctness of positional encoding after concatenating CRVs.

5. LLaMADecoderLayer Class: We modified this class to include the CRV integration
step at arbitrary layers and made it compatible with all other modified classes.

6. LLaMAModel Class: The main model class was updated to handle the concatenation
of CRVs through the network and manage the process.

7. LLaMAForCausalLM Class: We adjusted this class to ensure proper handling of
CRVs during the causal language modeling task.

These modifications were implemented incrementally while experimenting the NIR
framework. The changes allow for the seamless integration of CRVs at different depths of the
model, which allows us to study the impact of context injection on the model’s performance
in code generation tasks.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background on LLMs and their limitations
	1.2 Problem Statement and Research Questions
	1.3 Scope and Objectives
	1.4 Contributions of the study
	1.5 Thesis Structure

	2 Literature Review
	2.1 Traditional Methods Used in LLMs for Reasoning in Code Generation
	2.1.1 Chain-of-Thought Prompting
	2.1.2 Self-Reflection and Iterative Refinement
	2.1.3 Context-Aware Generation Methods
	2.1.4 Retrieval-Augmented Generation

	3 Proposed Architecture
	3.1 Overview
	3.2 Theoritical Framework
	3.2.1 Thinking Stage
	3.2.2 CRV Generation
	3.2.3 CRV stacking
	3.2.4 Dimensionality Reduction
	3.2.5 Integrating CRVs with Hidden States
	3.2.6 Generation Stage
	3.2.7 Overall Process

	4 Methodology
	4.1 Dataset Selection and Preprocessing
	4.1.1 Mostly Basic Python Programming (MBPP)

	4.2 Quantitative Metrics
	4.2.1 Response Rate
	4.2.2 Code Quality Metrics
	4.2.3 Code Structure and Complexity Analysis

	4.3 Qualitative Analysis
	4.3.1 Code Structure and Readability
	4.3.2 Algorithm Understanding and Implementation
	4.3.3 Error Patterns and Limitations

	5 Experiments and Results
	5.1 Experimental Setup
	5.1.1 The NIR Framework Configuration
	5.1.2 Hardware and Software Specifications
	5.1.3 Intermediate Processing Steps

	5.2 Quantitative metrics
	5.2.1 Response Rate
	5.2.2 Code Quality Metrics
	5.2.3 Code Structure and Complexity Analysis

	5.3 Qualitative Analysis
	5.3.1 Code Structure and Readability
	5.3.2 Algorithm Understanding and Implementation
	5.3.3 Error Patterns and Limitations
	5.3.4 Qualitative Analysis Implications

	5.4 Ablation Studies
	5.4.1 Results
	5.4.2 Analysis
	5.4.3 Ablation Studies Implications

	6 Discussion
	6.1 Interpretation of Results
	6.1.1 Response Rate and Code Quality
	6.1.2 Code Complexity and Structure
	6.1.3 Implications for Model Architecture and Training

	6.2 Limitations of the Current Approach
	6.2.1 Model and Dataset Limitations
	6.2.2 Output Inconsistencies
	6.2.3 Context Generation Incompleteness
	6.2.4 Trade-offs in Code Characteristics

	7 Conclusion and Future Work
	7.1 Summary of key findings
	7.2 Implications for LLM development
	7.2.1 Adaptive Architecture Design
	7.2.2 Hierarchical Contextual Processing

	7.3 Potential future research directions
	7.3.1 Future Research Directions

	References
	Appendix A Dataset Structure
	A.0.1 Example Entry
	A.1 Model Modifications

